

Amigo BOT

Technical
Manual

Copyright 2002, ActivMEDIA ROBOTICS, LLC. All rights reserved.

Under international copyright laws, this manual or any portion of it may not be copied or
in any way duplicated without the written consent from ActivMEDIA ROBOTICS, LLC.

The ActivMEDIA ROBOTICS-licensed Saphira libraries that accompany the robot and
accessories and which are available for network download by AmigoBot customers are
solely owned and copyrighted by SRI International, Inc. The AmigoBot software on disk
and on the AmigoBot server FLASH ROM that accompany the robot and accessories and
which are available for network download by AmigoBot customers are solely owned and
copyrighted by ActivMEDIA ROBOTICS, LLC. AmigoBot developers and users are authorized
by revocable license to develop and operate custom software for personal, research,
and educational use only. Duplication, distribution, reverse-engineering, or commercial
application of the AmigoBot software and hardware without the expressed written
consent of ActivMEDIA ROBOTICS is explicitly forbidden.

The various names and logos for products used in this manual are registered trademarks
or trademarks of their respective companies. Mention of any third-party hardware or
software constitutes neither an endorsement nor a recommendation.

AmigoBot Technical Manual, version 1.3, November 2002.

 ii

AmigoBot Mobile Robots

Federal Communications Commission (FCC) Statement

This equipment has been tested and found to comply with the limits for a class B digital
device, pursuant to part 15 of the FCC rules. These limits are designed to provide
reasonable protection against harmful interference when the equipment is operated in a
commercial or residential environment. This equipment generates, uses, and can radiate
radio frequency energy, and if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. There is no
guarantee that harmful interference won’t occur, in which case the user will be required
to correct the interference at their own expense. Some possible ways to ameliorate the
interference include:

• Reorient or relocate the receiving antenna

• Operate the equipment in a different location

• Connect the equipment to a different power outlet

• Consult with your local dealer or contact support online

Warning

It is essential that only the supplied power and radio units be used.

Any changes or modifications to the equipment not expressly approved by the parties
responsible for compliance could void your authority to operate the equipment.

Important Safety Instructions

• Read the installation and operations instructions before using the equipment.

• Avoid using power extension cords.

• To prevent fire or shock hazard, do not expose the equipment to rain or moisture.

• Refrain from opening the unit or any of its accessories.

• Keep wheels away from long hair or fur.

 iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..7

What is AmigoBot? ...7
Hardware ...7
Software and Modes of Operation..8
AmigoBot Technical Package..9
User-Supplied Components / System Requirements.....................................9
Additional Resources..9

ActivMEDIA ROBOTICS’ Software.. 9
AmigoBot Newsgroup ... 9
Support ... 10

CHAPTER 2 SPECIFICATIONS & CONTROLS..11

Physical Characteristics ...11
Controls, Switches, Indicators, and Sounds ..11

Recharge/Power/Battery... 11
Reset & Motors/Test Buttons and System/User LEDs .. 12
Sounds and Volume .. 12

Motors and Position Encoders...13
Sonar ...13

Sonar Rate and Sequence ... 13
Sonar Sensitivity ... 13

Serial and Accessory Ports...14
System/Aux1 Serial Port ... 14
Control Serial Port ... 14
Accessory Connector .. 14

Radio Modems ..14
Safety Watchdogs and Configuration ..15

CHAPTER 3 QUICK START...16

Preparative Assembly...16
Install ARIA..16
AmigoBot Cold Start-Up...17
Client-Server Connection ..17

A Successful Connection... 17
Operating the ARIA Demonstration Client ...18
Disconnecting ...18
Quickstart Troubleshooting with SRIsim..18

Proper Connections .. 19
SRIsim... 19

 iv

AmigoBot Mobile Robots

CHAPTER 4 SELF-TESTS ...20

Motors Test ...20
Sonar Tests..20
Self Wander..20

CHAPTER 5 AMIGOBOT OPERATING SYSTEM ..21

Communication Packet Protocol ..21
Packet Data Types...22
Packet Checksum...22
Packet Errors ..23

Server Information Packets..23
Client Commands...24

Client Command Argument Types...27
Programming AmigOS ...27

Synchronization—SYNC..27
Autoconfiguration..27
Opening the Servers—OPEN ..28
Keeping the Beat—PULSE ...28
Closing the Connection—CLOSE ...28

Movement Commands ...29
AmigoBot in Motion..29

PID Controls ...29
Position Integration...30

Sonar...30
Input / Output (I/O) ..30

DIGIN and DIGOUT...31
ADSEL...31
Sounds ...31

Extended Server Information Packets ...31
Packet Processing ...31
AUX Serial Packets ...31
IOpac and IOREQUEST ...32
Configuration Packets ...32
Encoder Packets ..33
Sound Playlist..34

CHAPTER 6 UPDATING & RECONFIGURING AMIGOS35

Where to Get AmigOS Software ..35
Installing the AmigOS Utilities...35
System Mode and Serial Port ..35

Updating AmigOS and Sounds with Amigosdl ..36
Configuring AmigOS Operating Parameters..36

Amigoscf Editor Commands ..37

 v

CHAPTER 7 MAINTENANCE & REPAIR...40

Drive Lubrication ...40
AmigoBot Batteries ...40

Charging the Battery .. 40
Alternative Battery Chargers.. 40

Getting Inside ..41
Factory Repairs..41

APPENDIX A ...42

System and Control Serial Ports ..42
Internal Serial Connector...43
Auxiliary Power ..43
Motors and Power...43
Accessory I/O Expansion Port ...43

APPENDIX B..44

APPENDIX C ...45

APPENDIX D ...46

INDEX..48

WARRANTY & LIABILITIES ...50

 vi

AmigoBot Mobile Robots

Chapter 1 Introduction
Congratulations on your purchase of an AmigoBot Mobile Robot and welcome to the
rapidly growing community of researchers, developers, and enthusiasts of AmigoBot.

This AmigoBot Technical Manual provides both the general and technical details you
need to modify and add hardware and software to your AmigoBot Mobile Robot.

We encourage you to also use the companion resources that come with this technical
document:

• Personal account for access to the ActivMedia Robotics software and technical
documentation library: http://robots.amigobot.com

• AmigoBot-users newsgroups

• AmigoBot suite of software, including ARIA, Saphira, and
the ActivMedia Robotics Basic Suite

What is AmigoBot?
The AmigoBot Intelligent Mobile Robot is the culmination of
many years of mobile-robotics research and development
by experts in artificial- and machine-intelligence from
around the world. Chief among these contributors is
Dr. Kurt Konolige and his team with the Artificial
Intelligence Center at SRI International, Inc., a world-
class technologies research company once affiliated
with Stanford University. AmigoBot is the newest
member in the larger family of Pioneer Mobile Robots
designed by Dr. Konolige.

AmigoBot is a small, 2-wheel, differential drive, intelligent mobile robot. Like its Pioneer
siblings, AmigoBot is truly an off-the-shelf, “plug and play” mobile robot, containing all of
the basic components for autonomous sensing and navigation in a real-world
environment, including battery power, drive motors and wheels, position / speed
encoders, sonar range-finding sensors, and integrated accessories, all managed via an
onboard microcontroller and mobile-robot server software.

Hardware
The AmigoBot Intelligent Mobile Robot is intended for indoor use in wheelchair-accessible
places as are found in most households, school classrooms, nursing homes, hospitals,
offices, research labs, and so on. The small (28 x 33 x 13cm), lightweight (3.6Kg with
battery), and highly maneuverable (750mm/sec translation; 300°/sec rotation; turns in
place) AmigoBot robot has a high impact-resistant polycarbonate body with a solid, but
lightweight aluminum chassis. Each of its two solid 10cm rubber tires are driven by a
reversible 12VDC motor. The drive system includes a passive rear caster for balance.

The standard AmigoBot comes with eight range-finding sonars: one on each side, four
forward facing and two in the rear for 360-degree sensing coverage. Attached to each
drive axle is a high-resolution optical quadrature shaft encoder that provides 9,550 ticks
per wheel revolution (30 ticks per millimeter) for precise position and speed sensing and
advanced dead-reckoning.

The AmigoBot drive and sensor systems are powered and processed from a single
controller, driven by a high-performance, I/O-rich 20-MHz Hitachi H8 microprocessor. The

 7

IntroductionIntroduction

 8

resident operating system (AmigOS) has 16K RAM and 64K FLASH on-chip memory, with
an additional 1M external FLASH.

Your AmigoBot also has a variety of I/O ports for native systems as well as expansion
control and power, including two RS232-compatible and one TTL-level serial ports, an 8-
bit I/O bus with four chip-select, three address, and read/write lines; six digital I/O ports,
four A/D ports; a PWM line, and a variety of 12 and 5VDC power sources.

The system also includes an integrated audio system with speaker and amplifier capable
of 9KHz playback of up to 255 (1.7 minutes) pre-recorded sound clips, such as music,
voices, and special effects. Alternative sound sets and a downloading tool come with
the robot.

Available integrated accessories include AmigoWIREFREE, a 900MHz radio modem pair for
wireless control by an offboard client computer and AmigoSURVEILLANCE, a color camera
with 2.4GHz A/V radio for live audio/video surveillance applications.

Software and Modes of Operation
The AmigoBot microcontroller comes loaded with AmigOS operating system software
that manage all the low-level systems and electronics of the mobile robot. AmigOS is
stored in FLASH ROM, as are the robot’s systems sounds and operating parameters; all
thereby non-volatile, but updateable with special systems-software tools.

AmigOS comes with self-contained programs that operate the robot autonomously
without need for other computers or intelligent devices. These Self-Test programs
exercise the onboard drives and sensors and have the robot autonomously wander
about on its own, navigating around obstacles while performing a simple routine of
motions and sounds. (See Chapter 4, Self Tests.) Future versions of AmigOS may also let
you program your own standalone routines for autonomous performance by AmigoBot.

But we don't recommend that you start learning H8 programming just yet. Rather,
AmigoBot prefers to operate by a higher intelligence: smart client applications running
on an connected computer whose power and speed is needed to perform complex
robotics tasks. Client applications like ActivMedia Robotics’ Basic Suite Navigator

AmigoBot Mobile Robots

communicate with the AmigoBot robot server through the Control serial interface, either
directly wired via AmigoLEASH or untethered with the AmigoWIRELESS accessory.

Most people prefer to operate AmigoBot in Client-Server Control Mode, because it gives
them quick, easy access to the robot’s functionality while working with high-level
software on a familiar host computer. Besides the Basic Suite of software including
Navigator, as well as the various ARIA demonstration clients, we make client-
development environments available so that you, too, may create your own client
applications.

And because AmigOS is virtually identical to the Pioneer, Pioneer 2, PeopleBot, and
PowerBot Operating Systems, the clients you program for AmigoBot are easily portable, if
not directly applicable, to all ActivMedia intelligent mobile robots. Navigator, for
example, operates without modification with the entire line of ActivMedia Mobile Robots,
past and future.

Other C/C++ language-based software-development environments for AmigoBot
include the very popular Saphira from SRI International, Inc. which is built atop our own
ARIA, the foundation application interface for ActivMedia robots.

AmigoBot Technical Package
• CD-ROM containing licensed copies of AmigoBot software and documentation

• Registration and Account Sheet

User-Supplied Components / System Requirements
• Client computer: 486-class or later PC with Microsoft Windows 95-98/ME/2K/NT or

Linux operating system.

• AmigoBot Robot with AmigoLEASH serial cable

• Four megabytes of available hard-disk storage

Additional Resources
Every new technical customer gets two additional and valuable resources:

• A private account on our Internet server for downloading ActivMEDIA ROBOTICS’
software, updates, and manuals

• Direct access to ActivMEDIA ROBOTICS’s technical support team.

ActivMEDIA ROBOTICS’ Software

We maintain a 24-hour, seven-day per week Web server where customers can obtain
AmigoBot and other ActivMedia Robotics software and support materials:

http://robots.amigobot.com

Some areas of the support website are restricted to licensed customers. To gain access,
enter the username and password written on the Registration & Account Sheet that
accompanied your robot.

AmigoBot Newsgroup

We maintain an email-based newsgroup through which AmigoBot owners share ideas,
software, and questions about the robot. To sign up, send an email message to our
automated newsgroup server:

 9

http://robots.activmedia.com/

IntroductionIntroduction

 10

 To: amigobot-users-request@activmedia.com
 From: <your return e-mail address goes here>
 Subject: <choose one command:>
 help (returns instructions)
 subscribe
 unsubscribe

Our SmartList-based listserver will respond automatically. After you subscribe, send your
email comments, suggestions, and questions intended for the worldwide community of
AmigoBot users:

To: amigobot-users@activmedia.com
From: <your return e-mail address goes here>
Subject: <something of interest to amigobot-users>

Access to the amigobot-users newslist is limited to subscribers, so your address is safe from
spam. However, the list currently is unmoderated, so please confine your comments and
inquiries to issues concerning the operation and programming of AmigoBot.

Support

Have a problem? Can’t find the answer in this or any of the accompanying manuals? Do
you know a way that we might improve AmigoBot? First consult this manual and check
into our online Frequently Asked Questions (FAQ) section on the
http:\\robots.activmedia.com server. If you can’t find the solution, then contact us:

amigobot-support@act ivmedia.com

Please include your robot's serial number. Look for it on the underside of your robot. We
need it to understand your AmigoBot's configuration to best answer your questions.

Your message goes directly to the AmigoBot technical support team. A staff member will
help you or point you to a place where you can find help.

Tell us your AmigoBot’s serial number.
We need it.

Really.

Because this is a support option, not a general-interest newsgroup like amigobot-users,
we reserve the right to reply only to questions about problems with AmigoBot through
amigobot-support. If you don’t hear from us by email within 24 hours, we may have
chosen not to respond. Try amigobot-users, too.

AmigoBot Mobile Robots

Chapter 2 Specifications & Controls
AmigoBots may be smaller than most, but they pack an impressive array of intelligent
mobile robot capabilities that rival bigger and much more expensive machines. And
AmigoBot’s modest size lends itself to very safe navigation in tight quarters and cluttered
spaces, such as classrooms, laboratories, small offices, and homes.

Physical Characteristics
For a complete list AmigoBot’s physical and operational specifications, see Appendix D.

Weighing only 3.6Kg (8 lbs. with standard battery), the basic AmigoBot Mobile Robot is
lightweight, but its strong polycarbonate body and aluminum chassis make it virtually
indestructible. These characteristics also permit AmigoBot to carry an additional payload
of up to 1Kg (2.2 lbs.), easily sufficient for available accessories or a sub-compact
computer.

 Controls, Switches, Indicators, and Sounds

Recharge/Power/Battery

A single slide-switch on the bottom of the AmigoBot
near the caster controls power to the entire robot and
all of its integrated accessories. The red LED on the top
towards the rear of the robot is lit when the AmigoBot
has power.

Next to the power switch is the Charge port. It
provides 12 VDC power to the robot's electronics,
motors, and accessories, and recharges the onboard
battery. Use the recommended accessory power
charger or equivalent.

The standard AmigoBot comes with a single, 12 VDC,
2.2 ampere-hour (26.4 watt-hour) sealed lead/acid
battery which supplies ample power for its drives,

electronics, and accessories. Under typical operation with continuous motor activity, the
battery provides over 3 hours of service.

You should maintain AmigoBot’s batteries in a charged state above 10 VDC. We
recommend recharging the battery when it falls below 11VDC (low-batt parameter),
even though the robot may continue to operate below 10 VDC. The microcontroller will

 11

Specifications and Controls

sound a warning when the battery voltage falls below that programmed level (see
Chapter 6, Updating and Reconfiguring AmigOS), and will automatically shut down the
motors and any active client-server connection when the battery voltage fall below 10
VDC so to avoid damage.

 Disengage the motors when recharging AmigoBot,
but you may continue operating the robot.

Typical recharge time depends on the charger and the discharge state of the battery.
The AmigoBot’s standard charger takes overnight (8 hours or more), whereas an 800 ma
two-state fast charger option will recharge the battery on 2-4 hours. You may continue
to operate AmigoBot while charging its batteries, although that will lengthen the
recharge time.

Reset & Motors/Test Buttons and System/User LEDs

On top near the back of AmigoBot next to the red Power LED are two pushbutton
switches and two additional LEDs. The red pushbutton switch is the Reset button. Press it
at any time to reset the AmigoBot controller to its power start-up state—motors
disengaged and not connected with a client.

The black Motors/Test
pushbutton’s function
depends on the operating
state of the system. When not
connected with a client, press
the button once to enable
and a second time to begin
AmigoBot’s self-tests, for
instance. While in self-test
mode, the button advances
the sonar tests. See Chapter
4, Self-Tests, for details.

When connected with a client, the black Motors/Test button manually enables and
disables the motors, which also can be performed programmatically with the AmigOS
command #4, as described in detail in Chapter 5, AmigOS.

When pressed in combination, the Motors/Test and Reset button enable system mode on
the controller. See Chapter 6, Updating and Configuring AmigOS, for details.

The green System and amber User LEDs indicate AmigOS activities, depending on the
current mode of operation. For example, on start up, the green LED flashes slowly and
rhythmically, while the amber LED is OFF. When connected with a client, the amber User
lamp flashes rapidly indicating Control serial activity. And when connected, the green
System LED flashes rapidly when the motors are disabled, and slowly when the motors are
enabled.

Sounds and Volume

The AmigoBot has an onboard audio system capable of reproducing recorded voices,
music, and sound effects stored in onboard FLASH ROM. Forty-nine out of the total 255
sounds are dedicated system cues, such as played when the robot is started up or reset,
after making a client connection, when stalled, and so on.

The small speaker on the top towards the rear of the robot, across from the control
buttons and LEDs is the sound source. Details on programming and playing sounds are in

 12

AmigoBot Mobile Robots

the Chapter 5, AmigOS. A recessed volume control can be turned with a flat-bladed
screwdriver to increase or reduce the sound volume.

Motors and Position Encoders
AmigoBot’s drive system uses high-speed, high-torque, reversible-DC motors. Each front
drive motor includes a high-resolution optical quadrature shaft encoder that provides
9,550 ticks per wheel revolution (approx. 30 ticks per millimeter) for precise position and
speed sensing and advanced dead-reckoning. The tires are four inches in diameter and
made of soft, but firm rubber for good traction and low compressibility.

Sonar
The AmigoBot comes standard with a single array of eight sonar. The sonar positions are
fixed: one on each side, four facing forward, and two at the rear, together providing
nearly 360 degrees of range sensing.

Sonar Rate and Sequence

The sonar firing rate is 20 Hz (50 milliseconds per
sonar) and sensitivity ranges from 10cm (6
inches) to more than 5 meters (16 feet). Objects
closer than 10cm are not detected and return
an out-of-range value (> 6 meters).

You may control the sonar’s firing pattern
through software (see Chapter 5, AmigOS); the
default is clockwise in sequence starting with the
side sonar (#0) closest to the left wheel and
around to sonar #7 on the back rear panel of
the robot.

Sonar Sensitivity

All eight sonar are controlled from a single board. Although calibrated at the factory,
you may adjust the sonar sensitivity and range to accommodate differing AmigoBot
operating environments. The sonar gain control is a one-turn screwcap accessible
through a hole on the top and near the front of AmigoBot. You may have to remove an
accessory to uncover the hole.

Using a flat-bladed screwdriver, turn the adjustment screw counterclockwise to make the
sonar less sensitive to external noise and false echoes. Low sonar-gain settings reduce
the robot’s ability to see small objects. Under some circumstances, that is desirable. For
instance, attenuate the sonar if you are operating in a noisy environment or on uneven
or highly reflective floora heavy shag carpet, for example. If the sonar are too
sensitive, they will “see” the carpet immediately ahead of the robot as an obstacle.

Increase the sensitivity of the sonar array by turning the gain-adjustment screw clockwise,
making the sonar more likely to see small objects or objects at a greater distance. For
instance, increase the sonar gain if you are operating in a relatively quiet and open
environment with a smooth floor surface.

 13

Specifications and Controls

Serial and Accessory Ports

System/Aux1 Serial Port

Plug your AmigoLEASH cable into the telephone connector-like RJ-11/12 System serial port
on the bottom of AmigoBot and its serial adapter connected to your PC to reprogram
AmigOS-related operating software, sounds, and parameters. The port doubles as an
auxiliary serial port (AUX1) and is supported in AmigOS for the attachment of RS232 serial-
based accessories.

See Chapters 5 and 6 for details.

Control Serial Port

If your AmigoBot does not have a radio modem, there is a cable that runs from a DSUB-9
serial connector on the bottom of your robot to another telephone connector-like RJ-
11/12 serial port inset into the cap that covers the Accessory I/O port. Use the top port
with AmigoLEASH to connect with offboard client software in Control Mode, such as Basic
Suite Navigator or the ARIA demonstration program.

You cannot connect a control program (“client”) through the System Serial Port.

Accessory Connector

Beneath the black rectangular plastic cover near the center of the robot is a 40-position
high-density IDC latching connector mounted on the AmigoBot controller board. It
supports a variety of accessories through its many I/O ports. See Appendix A, Ports and
Connectors, for details.

Radio Modems
AmigoBot supports an optional radio modem pair (900 MHz) for wireless operation of the
robot: One modem gets attached to the robot and the other to your basestation
computer. The robot’s modem is mounted on the underside and gets power (5 VDC)
and signal (Control serial) via a 9-pin DSUB connector and 2.1mm power plug that come
with the robot. The radio’s antenna fits up through the body; it’s top flexible section
unscrews from the main body.

Main power to AmigoBot’s radio modem
is controlled from the robot’s Power
switch. Use the pushbutton switch on the
side of the modem to individually control
its power. A green LED on the modem’s
face labeled PWR indicates power.
When lit, the adjacent red DCD LED
indicates a connection with the Host
modem of the pair. The DTE LED should
remain unlit since the connection is DCE.
If lit, slide the switch at the back side of
the modem near the power connector to
the opposite side so that it is in the DCE position.

The Host radio modem comes with a power module (110 or 220 VAC to 5 VDC) and serial
cable with pin adapters. Connect the power module and serial cable to the modem,
and the other end of the serial cable into an open serial port on your basestation
computer. Operate the power and indicators identically as with the robot’s modem.

 14

AmigoBot Mobile Robots

The radio modems are preconfigured at the factory for use with AmigoBot. For
configuration details, see the technical documentation that comes with the modems.

Note that the AmigoBot operates only in client-server Control Mode with the radio
modems.

Safety Watchdogs and Configuration
AmigoBot’s onboard server software, AmigOS, contains a communications watchdog
that will halt motion if communication between a client computer and the robot server is
disrupted for a set time interval, normally two seconds (watchdog). The robot will
automatically resume activity, including motion, as soon as communications are
restored.

Also, AmigoBot’s server software contains a stall monitor. If the drive exerts a PWM pulse
that equals or exceeds a configurable level and the wheels fail to turn (stallval), motor
power is cut off for a configurable amount of time (stallwait). The server software also
notifies the client which wheel is stalled. When stallwait elapses, motor power resumes
and motion continues under server control.

Both these “failsafe” mechanisms help ensure that the robot will not damage objects or
be electrically damaged during operation. You may reconfigure the communications,
drive current, and stall-wait values to suit your AmigoBot’s application. (See Chapter 6,
Updating & Reconfiguring AmigOS, for details.

 15

Quick Start

Chapter 3 Quick Start
AmigoBot comes fully assembled and ready for action. This chapter describes how to
operate the mobile robot with the Saphira demonstration software. (For more details
about programming and operating your Pioneer with Saphira, Basic Suite, , see their
respective programming manuals.)

The AmigoBot AmigOS servers require a serial communication link to a client. The serial
link may be:

• A tether (AmigoLEASH) from the Control serial connector on the top of AmigoBot
to a basestation computer

• An optional radio modem pair—one inside AmigoBot and its companion
connected to the serial port of a basestation computer.

Preparative Assembly
Out of the box, AmigoBot comes fully assembled, with its batteries installed and fully
charged—ready to drive right out of the box. However, you may need to attach an
antenna or plug in an accessory that we intentionally leave unattached so as to prevent
damage during shipping. Consult any Tech Notes and accessory assembly manuals that
may accompany your AmigoBot for final assembly details.

Install ARIA
ARIA client software-development environment, including the ARIA demonstration
program and robot simulator, come on CD-ROM with your new robot. ActivMedia
Robotics customers also may obtain ARIA and related software and updates from our
support website:

http://robots.activmedia.com

When installed, ARIA typically requires eight megabytes of hard-disk space.

 The Windows version of ARIA is a self-extracting InstallShield® archive. Simply double-
click its .exe icon and follow the extraction program’s instructions. Normally, ARIA is put
into a directory named C:\Program Files\ActivMedia Robotics\ARIA. The
demonstration program and simulator get put into the bin\ subdirectory. For
convenience, you may access all these from the Start Menu’s Programs option. The
demonstration program’s source code and MSVC++ project and workspace files are in
the examples\ subdirectory.

Linux users must have superuser (root) permissions in order to install ARIA. It comes as an
RPM installation archive:

rpm -ihv aria...

and gets installed in /usr/local/Aria. The ARIA demonstration program and simulator
get put into the bin/ subdirectory. The demonstration sources and makefile are in the
examples/ subdirectory.

Linux users should also be sure they have permission to read/write through their PC’s serial
port that connects with the robot. The default is /dev/ttyS0. ARIA is a terminal
application that does not include a GUI, so its programs do not require X-Windows.

 16

AmigoBot Mobile Robots

AmigoBot Cold Start-Up
Place your AmigoBot on the floor in an open space. Slide the main Power switch on the
bottom of the robot to ON. The red power indicator LED on the top of the robot should
light and the Power/Reset audio cue should play.

Client-Server Connection
To start the ARIA client demonstration program and connect with AmigoBot, we presume
that you have completed the preparatory stages of this chapter by installing ARIA (as
needed), by starting and testing the robot, and by connecting the client PC with the
AROS controller via a serial link. Now it is time to connect the ARIA demonstration
program with your robot.

If you are using radio modems to communicate wirelessly from a desktop PC to the
robot, now is a good time to power the units.

Windows users may select the ARIA demo from the Start menu, in the ActivMedia
Robotics program group. Otherwise, start if from the ARIA bin\ directory.

Linux users will find the compiled demo in /usr/local/Aria/bin/ or in examples/. Start it:
 %s ./demo

NOTE
By default, the ARIA demo connects with your robot server through your client PC’s

COM1 (Windows) or /dev/ttyS0 (Linux) serial port.
You must alter the demo source and recompile for a different serial port.

A Successful Connection

MODE

laser

io

positio

bumps

sonar

camera

gripper

wander

teleop

ARIA prints out lots of
diagnostic text as it
negotiates a connection
with the robot. If successful,
the client requests various
AmigOS servers to start their
activities, including sonar
polling, position integration,
and so on. The
microcontroller sounds an
audible connection cue,
and you should hear the
robot’s sonar ping with a
distinctive and repetitive
clicking. In addition, the
MOTORS/TEST LED should light
continuously (was flashing
slowly while awaiting
connection). Note that the
ARIA demo automatically
engages your robot’s motors
though a special client
command. Normally, the
motors are disengaged
when first connecting.

 Table 1. ARIA demo operation modes

HOT
KEY

DESCRIPTION

l Displays the closest and furthest readings
from the robot’s laser range finder

i • Displays the state of the robot’s
digital and analog-to-digital
I/O ports

n p Displays the coordinates of the robot’s
position relative to its starting location

b Displays the status of the robot’s bumpers

s Displays the robot’s sonar readings
 c Controls and exercises the robot’s pan-

tilt-zoom robotic camera
 g Controls, exercises, and displays status of

the robot’s Gripper
 w Sends the robot to move around at its own

whim, while avoiding obstacles
 t Allows the user to drive and steer the
robot via the keyboard or a joystick
connected to the computer

17

Quick Start

Operating the ARIA Demonstration Client
When connected with the ARIA demo client, your AmigoBot becomes responsive and
intelligent. For example, it moves cautiously. Although it may drive toward an obstacle,
your ActivMedia robot will not crash because the ARIA demo includes obstacle-
avoidance behaviors which enable the robot to detect and actively avoid collisions.

The ARIA demo displays a menu of robot operation options. The default mode of
operation is teleop. In teleop mode, you drive the robot manually, using the arrow keys
on your keyboard or a joystick connected to the client PC’s joystick port.

While driving from the keyboard, each keypress speeds AmigoBot forward or backward
or incrementally changes its direction incrementally. For instance, when turning, it is
often useful to press the left- or right-turn key rapidly several times in a row, because the
turn increment is small.

 sp

The other modes of ARIA demo operation give you access to your robot’s various sensors
and accessories, including encoders, sonar,
I/O port states, and more. Accordingly, use
the ARIA demo not only as a demonstration
tool, but as a diagnostic one, as well, if you
suspect a sensor has failed or is working
poorly.

Access each ARIA demo mode by pressing
its related hot-key; ‘t’, for instance, to select
teleoperation. Each mode includes
onscreen instructions and may have sub-
menus for operating of the respective
device.

Disconnecting
When you finish, press the Esc key to disconnect the
server and exit the ARIA client demonstration progra
disengage its drive motors and stop moving, and its
now slide the robot’s Main Power switch to OFF.

Quickstart Troubleshooting with SRIsi
Most problems occur when attempting to connect t
first time. The process can be daunting if you don’t
installations.

ATTENTION

The ARIA client to robot server conn

You may not connect ARIA or other client softw
network TCP/IP li

Rather, EXPORT the onboard PC (display, keybo
over the network but run ARIA or other client so

 18
 Table 2. Keyboard teleoperation

KEY ACTION

↑ Increment forward velocity

↓ Decrement forward velocity

← Incremental left turn

→ Incremental right turn

ace All stop
 ARIA client from your AmigoBot
m. Your AmigoBot should
sonar should stop firing. You may

m
he ARIA client with AmigoBot for the
make the right connections and

!

ection is SERIAL only.

are with the robot controller over a
nk.

ard, and mouse) to a remote terminal
ftware locally on the onboard PC.

AmigoBot Mobile Robots

Proper Connections

Make sure you have ARIA properly installed and that your robot and connections are
correct. A common mistake with Linux is not having the proper permissions on the
connecting serial port.

Make sure your robot’s batteries are fully charged (battery LED green). The robot servers
shut down and won’t allow a connection at under 11 volts.

The most common problems occur with the serial connection itself, particularly between
radio modems. If you are using the onboard PC or radio modems, the serial connection
is internal and established at the factory; you should not have problems with those
cables. Simply make sure the RADIO’s power switch is on, for example.

With other serial connections, make sure to use the proper cable: a “pass-through” one,
minimally connecting pins 2, 3, and 5 of your PC’s serial port to the HOST radio modem of
the pair or to the robot’s Control serial port. The HOST radio modem should be set to DCE
mode and plugged into the serial connector on your PC that serves as COM1 or
/dev/ttyS0.

If you access the wrong serial port, the ARIA demonstration program will display an error
message. If the robot server isn't listening, or if the serial link is severed somewhere
between the client and server (cable loose, or a modem OFF, for instance), the client will
attempt "Syncing 0" several times and fail. In that case, RESET the robot and check your
serial connections. For instance, if you are using radio modems, the DCD lamp on the
HOST unit next to your PC should light up. If it doesn't, it means it cannot find the one in
the robot.

If for some reason communications get severed between the ARIA client and AmigoBot
server, but both the client and server remain active, you may revive the connection with
little effort: If you are using radio modems, first check and see if the robot is out of range.

To test for range limits, simply pick up the robot and move it closer to the basestation
radio modem. If the robot was out of range, the connection should resume. If not,
check to make sure that radio modems were not inadvertently switched OFF.

Communications also will fail if the client and/or server is somehow disabled during a
session. For instance, if you inadvertently switch off the robot or press the RESET button,
you must restart the connection. Turning the Main Power switch OFF and then back ON, or
pressing the RESET button puts the robot servers back to their wait state, ready to accept
client connections again. If the ARIA demo or other client application is still active,
simply press esc and restart the.

SRIsim

To verify proper installation of the software, you might run the robot simulator, SRISim. It is
in the same directory as the ARIA demonstration program. Start SRIsim first, then the
ARIA demo program. ARIA should successfully connect with the simulator if the software
has been installed correctly.

Linux users take note: SRIsim is a GUI program that graphically displays a simulated
robot and its world environment in which it operates. Accordingly, you will need to be
running X-windows (typically “startx”) to use it.

SRIsim looks like a real robot to the ARIA client, so you can operate the demo as you do
your own ActivMedia robot. SRIsim includes simulated worlds and different robot profiles
which you select from the Files menu, too, so you can see how different robots might
navigate in a real or imagined space.

 19

Self Tests

Chapter 4 Self-Tests
AmigOS comes with built-in test routines that exercise AmigoBot's drive motors, sonar,
and accessories.

Power up or reset the robot, then press the black Motors/Test button once to hear the
AmigOS version number. You may press the Reset button at any time to disable self-tests.

Another audible
tests. Press the b
press the button

Motors Test
The first self-test e
conscious of bys
from within a dia

The motors self-t
each forward to
clockwise, respe

Sonar Tests
Once the motor

You should hear
order clockwise,
System LED blink
as your hand, ap

The sonar are nu
next sonar.

Self Wander
After the last son
wait state. Or, p

Self-wander is a
entirely on its ow
stop, play sound

Self-wander is a
sensors and onb
very limited cap
applications.

Press the Reset b

 20
Place AmigoBot on the floor and have everyone step back
before engaging self-tests.
 cue will alert you that you may have inadvertently engaged the self-
lack Motors/Test button one again to engage self-tests. If you don’t
 a second time, self-tests automatically cancel after 10 seconds.

xercises AmigoBot’s drive motors. During this test, the robot is not at all

tanders. Please have everyone step back and remove any obstacles
meter of about two meters (6-8 feet) around the robot.

est begins by engaging the right drive wheel then the left drive wheel,
 complete one and one-half full turns counter-clockwise and then
ctively.

s self-test completes, AmigoBot automatically moves on to test the sonar.

 the distinctive clicking sound as the sonar "ping" individually, each in
 beginning with the sonar closest to the left wheel (sonar #0). The green
s at a rate relative to the distance to a target; quicker as a target, such
proaches.

mbered 0 through 7. Press the black Motors/Test button to switch to the

ar test, press the red Reset button to return AmigoBot to its client-server
ress the black Motors/Test button to enable Self-Wander mode.

simple, yet robotically sophisticated program that has AmigoBot drive
n around the room avoiding obstacles. Every few minutes, the robot will
s, spin in place, and then continue on its otherwise aimless journey.

good demonstration and test of AmigoBot’s innate robotic abilities—
oard intelligence—without having to connect with client—though with
abilities as compared with Saphira or other PC-based robotics client

utton or switch power OFF at any time to cancel the self-wander test.

AmigoBot Mobile Robots

Chapter 5 AmigoBot Operating System
All ActivMEDIA robots use an intelligent
client/server control architecture developed by
Dr. Kurt Konolige. In the model, the server works
to manage all the low-level details of the mobile
robot’s systems. These include operating the
motors, firing the sonar, collecting sonar and
motor encoder data, and so onall on
command from and reporting to a separate
client application, such as Saphira and ARIA.

With this client/server architecture, high-level
robotics applications developers do not need to
know many details about a particular robot
server, because the client typically insulates them
from this lowest level of control. Some of you,
however, may want to write your own robotics
control and reactive planning programs, or just
would like to have a closer programming
relationship with your robot. This chapter explains
how to communicate with AmigoBot via the
AmigoBot Operating System (AmigOS)
client/server interface. The same AmigOS
functions and commands are supported in the
various client-programming libraries that
accompany the robot.

Experienced ActivMedia robot users already are
familiar with AmigOS: It is directly compatible
with Pioneer Operating Systems, implementing
most of the same commands and protocols.
AmigOS, of course, does not support all the PSOS
or P2OS-enabled accessories for those respective
robots, and extends the servers to add new
functionality, such as with sounds.

AmigoBot’s client-server architecture Communication Packet Protocol
AmigOS servers communicate with a client
application using special packet protocols: command packets from client to server, and
server information packets (SIPs) from the server to client. Both are byte data streams
consisting of four main elements: a two-byte header, a one-byte count of the number of
command/data bytes, the client command and its arguments or the server information
data, and finally, a two-byte checksum.

 21

AmigoBot Operating System

Main elements of AmigOS communication packet protocol

Component Bytes Value Description
Header 2 0xFA, 0xFB Packet header; same for client and server
Byte Count 1 N + 2 Number of subsequent data bytes, including

checksum word, but not Byte Count.
Maximum 200 total bytes.

Data N command
or SIB

Client command or server information block
(SIB; discussed in subsequent sections)

Checksum 2 computed Packet integrity checksum

Packet Data Types

Client-command and server-information packets use integer (2 byte), word (4 bytes),
and string (n < 200 bytes) data types. There is no convention for sign; each packet type
is interpreted idiosyncratically by the receiver. Negative integers are sign-extended.

AmigOS Communication Packet Data Types

Data Type Bytes Order
integer 2 b0 low byte; b1 high byte
word 4 b0 low byte; b3 high byte
string up to ~200,

length-prefixed
b0 length of string;
b1 first byte of string

Packet Checksum

Calculate the communication packet checksum by successively adding data byte pairs
(high byte first) to the running checksum (initially zero), disregarding sign and overflow. If
there is an odd number of data bytes, the last byte is XORed to the low-order byte of the
checksum.

NOTE: The checksum word is placed at the end of the packet, with its bytes in the
reverse order of hat used for arguments and data; that is, b0 is the high byte, and b1 is
the low byte.

Use the following C-code fragment in your client applications to compute a checksum:

int
calc_chksum(unsigned char *ptr)
/* ptr is array of bytes, first is data count */
{
 int n;
 int c = 0;
 n = *(ptr++);
 n -= 2; /* don't use chksum word */
 while (n > 1) {
 c += (*(ptr)<<8) | *(ptr+1);
 c = c & 0xffff;
 n -= 2;
 ptr += 2;
 }
 if (n > 0) c = c ^ (int)*(ptr++);
 return(c);
}

 22

AmigoBot Mobile Robots

Packet Errors

Currently, AmigOS ignores a client command packet whose byte count exceeds 200 or
has an erroneous checksum. The client should similarly ignore erroneous server
information packets.

AmigOS does not acknowledge receipt of a command packet nor does it have any
facility to handle client acknowledgment of a server information packet. Consequently,
client/server communications are as reliable as the physical communication link. A cable
tether between the robot and client computer provides very reliable links; radio modem-
mediated communication is less reliable. Accordingly, when designing client
applications that may use radio modems, do not expect to receive every information
packet intact, nor can you expect the server to accept every command.

Because of the real-time nature of the client/server interaction, we made a conscious
decision to provide an unacknowledged packet interface. Re-transmitting server-
information or command packets would serve no useful purpose, because old data
would be virtually useless in maintaining responsive client-server interaction.

For some operations, however, the data do not decay as rapidly: Some commands are
not overly time-sensitive—for example, those that perform such housekeeping functions
as changing the sonar polling sequence. It would be useful to have a reliable packet
protocol for these operations, and we are considering this for a future release of the
server interface.

In the meantime, the client/server interface provides a simple means for dealing with
ignored command packets: Most of the client commands alter state variables in the
server. By examining those values in the server information packet, client software may
detect ignored commands and reissue them until achieving the correct state.

Server Information Packets
Once connected, by AmigOS automatically sends a packet of information over the
serial communication line back to the client every 100 milliseconds, depending on the
infoCycle setting in the robot FLASH parameters (see Chapter 6, Updating &
Reconfiguring AmigOS). The standard AmigOS Server Information Packet (SIP) informs
the client about a number of the robot’s operating parameters and readings, using the
order and data types shown in the Table.

AmigOS also supports several additional server information packet types, including an
alternative server information packet.

Standard AmigOS Server Information Packet (SIP)
Name Data Type Description
Header integer Exactly 0xFA, 0xFB
Byte Count byte Number of data bytes + 2 < 201 (0xC9) max.
Status byte = 0x3S; where S = Motors status
 sfSTATUSSTOPPED (2) Motors stopped
 sfSTATUSMOVING (3) Motors moving
Xpos unsigned integer (15 ls-bits) Wheel-encoder integrated coordinates; platform-

dependent units; multiply by
Ypos unsigned integer (15 ls-bits) 0.5083 to convert to millimeters
Th pos signed integer Orientation in platform-dependent units—

multiply by 0.001534 for degrees.
L vel signed integer Wheel velocities (respective Left and Right) in

platform-dependent units;
R vel signed integer multiply by 0.6154 to convert to mm/sec

 23

AmigoBot Operating System

Battery byte Battery charge times 10 volts
Bumpers integer Motor stall indicators. Bit 0 of the lsbyte is the

left wheel stall indicator = 1 if stalled; bit 0 of
the msbyte is the right wheel stall.

Control signed integer Setpoint of the server’s angular position servo—
multiply by 0.001534 for degrees

PTU unsigned integer bit 0 reflects motors engaged state (1 of
engaged) and bit 1 reflects the sonar toggle (1 if
on)

Compass byte Always 0
Sonar
readings

byte Number of new sonar readings included in
information packet; readings follow:

Sonar
number

byte Sonar number

Sonar
range

unsigned integer Sonar reading in millimeters (old AmigOS v1.0
multiply by 0.555)

…rest of the sonar readings…
Timer unsigned int Currently selected analog port number 1-5
Analog byte User analog input (0-255=0-5 VDC) reading on

selected port
Digin byte User digital input; 6 available on b0-5; actual

results depend on configuration settings
Digout byte User digital output; 6 available on b0-5; actual

results depend on configuration settings
Checksum integer Checksum (see previous section)

Client Commands
AmigOS implements a structured command format for receiving and responding to
directions from a client for control and operation of the robot or its simulator. The
number of client commands per second you may send depends on the serial baud rate
and average number of data bytes per command. The AmigOS server may not be up
to the task of managing a deluge of commands; it reads and processes client
commands only once per every 10 ms.

The client must send a command at least once every two seconds or so (watchdog
parameter; see Chapter 6, Updating & Reconfiguring AmigOS); otherwise, the
communication watchdog server will stop the robot’s onboard drives.
AmigOS client command packet

Component Bytes Value Description
Header 2 0xFA,

0xFB
Packet header; same for client and server

Byte Count 1 N + 2 Number of subsequent command bytes plus
checksum, not including Byte Count.
Maximum of 200 bytes.

Command
Number

1 0 - 255 Client command number;
see Table 4-4

Argument Type
 (command
 dependent)

1 0x3B or
0x1B or

0x2B

Required data type of command argument:
positive integer (sfARGINT),
negative integer or absolute value (sfARGNINT), or
string (sfARGSTR)

Argument
(command dependent)

n data Command argument; integer or string

Checksum 2 computed Packet integrity checksum

 24

AmigoBot Mobile Robots

AmigOS command set
Command # Args Description AmigOS P2OS AROS
 Before Client Connection
SYNC0 0 none Start connection; echoes 1.0 1.0 1.0
SYNC1 1 none synchronization commands
SYNC2 2 none back to client.
 After Established Connection
PULSE 0 none Client pulse resets watchdog 1.0 1.0 1.0
OPEN 1 none Starts the controller 1.0 1.0 1.0
CLOSE 2 none Close client-server connection 1.0
POLLING 3 string Set sonar polling sequence 1.0 1.0 1.0
ENABLE 4 int Enables/disables the motors 1.0 1.0 1.0
SETA 5 signed int Sets translation

acc/deceleration; in mm/sec2
1.0 1.0 1.0

SETV 6 int Set maximum translation
velocity (mm/sec)

1.0

1.0
1.0

SETO 7 none Resets server to 0,0,0 origin 1.0 1.0 1.0
SETRV 10 int Sets maximum rotational

velocity; in degrees/sec
1.0 1.0 1.0

VEL 11 int Move forward (+) or reverse (-)
at mm/sec

1.0 1.0 1.0

HEAD 12 int Turn to absolute heading;
0-359 degrees

1.0 1.0 1.0

DHEAD 13 int Turn relative to current
heading; ± degrees

1.0

1.0
1.0

SAY 15 int,string Sound duration (20 ms
increments)/tone (half-cycle)
pairs; int is string length

see
SOUND

1.0 1.0

CONFIG 18 int Request configuration SIP 1.0 1.4 1.0
ENCODER 19 int Request continuous (>0) or stop

sending (=0) encoder SIPs

1.0
1.4

1.0
RVEL 21 signed int Rotate at ± degrees/sec 1.0 1.0 1.0
DCHEAD 22 int Colbert relative heading

setpoint; ± degrees

1.0

1.0

1.0
SETRA 23 int Sets rotational (±)de/

acceleration in mm/sec2
1.0 1.0 1.0

SONAR 28 int Enable (1) or disable (0) the
sonars

1.0 1.0 1.0

STOP 29 none Stops robot (motors remain
enabled)

1.0 1.0 1.0

DIGOUT 30 int Msbits is a byte mask that
selects output port(s) for
changes; lsbits set (1) or reset
(0) the selected port.

–

1.2

1.0

VEL2 32 int Independent wheel velocities;
lsb=right wheel; msb=left
wheel; AmigOS in 2cm/sec
increments

1.0 1.0 1.0

GRIPPER 33 int Pioneer Gripper server
command. See the Pioneer
Gripper manuals for details.

– 1.3 1.0

ADSEL 35 int Select the A/D port number for
analog value in SIP. Selected
port reported in SIP Timer
value.

1.0

1.2

1.0

GRIPPERVAL 36 int P2 Gripper. 1.0 1.3 –

 25

AmigoBot Operating System

IOREQUEST 40 int Request an IOpac. Set
argument=1 for a single packet;
>1 for a packet each infoCycle;
0 stop continuous packets

1.2

1.E

1.2

PTUPOS 41 int Msb is the port number (1-4)
and lsb is the pulse width in
100µsec units PSOS or 10µsec
units P2OS

–

1.2

–

TTY2 42 string Send string argument to serial
device connected to AUX port
on microcontroller

1.0

1.0

1.0

GETAUX 43 int Request to retrieve 1-200 bytes
from the aux serial channel; 0
flushes the aux serial input
buffer.

1.0

1.4

1.0

BUMPSTALL 44 int Stop and register a stall if front
(1), rear (2) or either (3) bump-
ring contacted. Off (default) is
0.

–

1.5

–

TCM2 45 int TCM2 Module commands; see
P2 TCM2 Manual for details.

– 1.6 –

E_STOP 55 none Emergency stop, overrides
deceleration

1.0 1.8 1.0

STEP 64 none Single-step mode (simulator
only)

1.0 1.0 1.0

TTY3 66 String Send string argument out to
serial device connected to
AUX2 serial port

1.3 1.4 1.0

GETAUX2 67 int Request to retrieve 1-200 bytes
from the AUX2 serial port; 0
flushes the buffer.

1.3 – 1.1

ROTKP 82 int Change working rotation
Proportional PID value (not
FLASH default)

1.3 1.M 1.1

ROTKV 83 int Change working rotation
Derivative PID value (not
FLASH default)

1.3 1.M 1.1

ROTKI 84 int Change working rotation
Integral PID value (not
FLASH default)

1.3 1 1.1

TRANSKP 85 int Change working translation
Proportional PID value (not
FLASH default)

1.3 1.M 1.1

TRANSKV 86 int Change working translation
Derivative PID value (not
FLASH default)

1.3 1.M 1.1

TRANSKI 87 int Change working translation
Integral PID value (not
FLASH default)

1.3 1.M 1.1

REVCOUNT 88 int Change working differential
encoder count (not FLASH
default)

1.3 1.M 1.1

SOUND 90 int Play stored sound 1.0 – 1.0
PLAYLIST 91 int Request playlist packet for

sound number or 0 for all user
sounds

1.0

–

1.0

SOUNDTOG 92 int Mute (0) or enable (1) sounds 1.0 – 1.0

 26

AmigoBot Mobile Robots

The AmigOS command is comprised of a one-byte command number optionally
followed by, if required by the command, a one-byte description of the argument type
and the two (integers) or more (strings) byte argument value.

The number of client commands you may send per second depends on the Control
serial baud rate, average number of data bytes per command, synchronicity of the
communication link, and so on. AmigOS’ command processor runs on a ten millisecond
interrupt cycle, but the server response speed depends on the command. Typically, limit
client commands to a maximum of one every 20 milliseconds or be prepared to recover
from lost commands.

Client Command Argument Types

There are three different types of AmigOS client-command arguments: positive integers
two bytes long, negative integers two bytes long, and NULL-terminated strings consisting
of as many as 196 characters.

The byte order is least-significant byte first. Negative integers are transmitted as their
absolute value, unlike information packets, which use sign extension for negative
integers; see below. The argument is an integer, a string, or nothing, depending on the
command.

Programming AmigOS
You may create your own AmigOS interface, or use the convenience functions available
through the various applications development software that comes with your AmigoBot.

Synchronization—SYNC

Before exerting any control, a client application must first establish a connection to the
AmigoBot server via its RS-232 Control serial port. Over that established communication
link, the client then sends commands to and receives operating information from the
server.

When first started, the AmigoBot is in a “wait” state; AmigOS listens for communication
packets over its designated port. To establish a connection, the client application must
send a series of three synchronization packets through the host communication port—
SYNC0, SYNC1, and SYNC2, in succession, and retrieve the server responses.

Specifically, and as examples of the client command protocol, the synchronization
sequence of bytes is (in hexadecimal notation):
SYNC0: 0xFA, 0xFB, 0x03, 0x00, 0x00, 0x00
SYNC1: 0xFA, 0xFB, 0x03, 0x01, 0x00, 0x01
SYNC2: 0xFA, 0xFB, 0x03, 0x02, 0x00, 0x02

AmigOS responds to each client command, forming a succession of identical
synchronization packets. The client should listen for the returned packets and only issue
the next synchronization packet after it has received the echo.

Autoconfiguration

AmigOS automatically sends configuration information back to the client in the last sync
packet (SYNC2). After the SYNC2 byte, there are three NULL-terminated strings that
comprise the robot’s name, class, and subclass. You may uniquely name your AmigoBot
with a special configuration tool we provide. The class and subclass are fixed and
cannot changed by the user.

 27

AmigoBot Operating System

The class string is Pioneer; the subclass depends on your robot model—amigo for the
AmigoBot. Clients may use these identifying parameters to self-configure their own
operating parameters.

Opening the Servers—OPEN

Once a communication link is established, the client should then send the OPEN
command #1 (no argument; 0xFA, 0xFB, 0x03, 0x01, 0x00, 0x01) which causes the
AmigoBot to perform a few housekeeping functions, start its sonar and motor controllers
(among other things), listen for client commands, and begin transmitting server
information packets.

Note that once connected, AmigoBot's motors are disabled, regardless of their state
when last connected. To enable the motors after starting a connection, you must either
do it manually (press the black MOTORS/TEST button) or send an ENABLE client command
#4 with an integer argument of 1 (0xFA, 0xFB, 0x06, 0x04, 0x3B, 0x01, 0x00, 0x05, 0x3B).

Keeping the Beat—PULSE

An AmigOS safety watchdog expects to receive at least one command packet from the
client every few seconds. Otherwise, it assumes the client/server connection is broken
and shuts down the robot’s motors.

It’s good practice to send a PULSE command #0 (0xFA, 0xFB, 0x03, 0x00, 0x00, 0x00) to
AmigOS just after opening the servers. And if your client application will be distracted for
any appreciable time, periodically issue the PULSE client command to let the server know
you are indeed alive and well. If the robot shuts down due to lack of communications
traffic, it will revive upon receipt of a client command and automatically accelerate to
the last-specified speed at the current heading.

Closing the Connection—CLOSE

To close a connection, disable the motors and sonar, and reset AmigOS to the wait state,
simply issue the client CLOSE command number 2 (0xFA, 0xFB, 0x03, 0x02, 0x00, 0x02).

With AmigOS versions 1.3 and later, many of the controller’s operating parameters return
to their FLASH-based
default values upon
disconnection with the
client.1 For example, if
the FLASH default for the
maximum velocity is
1000 millimeters per
second, and your client
uses the SETV command
#6 to reset the
maximum velocity to
500 millimeters per
second, the maximum
velocity automatically
will revert back to 1000
for a subsequent session.

1 With earlier versions, the chang

after the controller was reset.

 28
AmigOS motion commands

 Rotation
HEAD Absolute heading
DHEAD, DCHEAD Differential heading from control point
SETRA Rotational (de)acceleration to achieve

setpoint
SETRV Sets rotational velocity for Colbert turn

and turnto commands

 Translation
VEL Forward/back velocity
SETA Translational (de)acceleration to

achieve setpoint
SETV Velocity for Colbert move command

es persisted between sessions, and reverted to the FLASH defaults only

AmigoBot Mobile Robots

Movement Commands
The AmigOS motors server accepts several different motion commands of two mutually
exclusive types: either direct wheel-velocity control or AmigOS motor controls. The robot
server automatically abandons any AmigOS translational or rotational setpoints and
switches to direct wheel-velocity control mode when it receives a SETVEL2 command.
Any other motion command makes AmigOS abandon direct wheel-velocity control. For
example, if the AmigOS is in two-wheel velocity mode and is given a HEAD command, it
disables two-wheel velocity mode and starts controlling the heading and velocity of the
robot.

When in AmigOS motion control (recommended), translation and rotation operate
independently. AmigOS will try to make the robot achieve the desired velocity and
heading as soon as the commands are received, using its internal acceleration and
deceleration managers, which default values you may set and change on the fly (SETRA
and SETA).

AmigoBot in Motion
When AmigOS receives a translation or
rotation command, it acc(de)elerates
the AmigoBot at the SETA or SETRA rate
you program, or the rates preset in the
AmigOS configuration parameters.
Rotational headings are achieved by
a trapezoidal velocity function which is re
computed each time a new heading
command is received, making on-the-fly
orientation changes possible.

rotational
velocity

time

max velocity

accel decel

position
achieved

short turn,
max velocity
not reached

position
achieved

start
position

-
Trapezoidal turning velocity profile

Note that you may override deceleration with the emergency stop (E_STOP) command
number 55. Accordingly, with E_STOP, the robot brakes to zero translational and
rotational velocities with very high deceleration and remains stopped until it receives a
subsequent translational or rotational velocity command from the client.

PID Controls

The AmigOS drive servers use a common Proportional-Integral-Derivative (PID) control
system to adjust the PWM pulse width at the motor drivers and subsequent power to the
motors. The motor-duty cycle is 200 microseconds; pulse-width is proportional 0-255 for 0-
100% of the duty cycle.

The AROS drive servers recalculate and adjust your robot’s trajectory and speed every
ten milliseconds based on feedback from the wheel encoders.

The default PID values for translation and rotation and maximum PWM are stored as
FLASH parameters in your robot’s microcontroller and may be changed. You also may
temporarily update the PID values with the AmigOS client commands 84 through 87. On-
the-fly changes persist until the controller is reset. The translational PID values apply to
independent wheel-velocity mode.

The P term value Kp increases the overall gain of the system by amplifying the position
error. Large gains will have a tendency to overshoot the velocity goal; small gains will
limit the overshoot but cause the system to become sluggish.

The D term Kv provides a PID gain factor that is proportional to the output velocity. It has
the greatest effect on system damping and minimizing oscillations within the drive

 29

AmigoBot Operating System

system. The term usually is the first to be adjusted if you encounter unsatisfactory drive
response.

The I Term Ki moderates any steady state errors thereby limiting velocity fluctuations
during the course of a move. At rest, your robot will seek to “zero out” any command
position error. Too large of a Ki factor will cause an excessive windup of the motor when
the load changes, such as when climbing over a bump or accelerating to a new speed.

Position Integration

AmigoBot keeps track of its position and
orientation based on dead-reckoning
from wheel motion, which is an internal
coordinate position. Registration
between external and internal
coordinates deteriorates rapidly with
movement, due to gearbox play, wheel
imbalance and slippage, and many
other real-world factors. You can rely
on the dead-reckoning ability of the
robot for just a short range—on the
order of several meters and one
revolution, depending on the surface
(carpets tend to be worse than hard
floors).

0

+90

+180

+270

+X

+Y

Front

Internal coordinate system

Also, moving either too fast or too slow
tends to exacerbate the absolute
position errors. Accordingly, consider
the robot’s dead-reckoning capability
as a means of tying together sensor

readings taken over a short period of time, not as a method of keeping the robot on
course with respect to a global map.

The orientation commands HEAD (#12) and DHEAD (#13) turn the robot with respect to
its internal dead-reckoned angle. On start-up, the robot is at the origin (0,0), pointing
toward the positive x-axis at 0 degrees. Absolute angles vary between 0 and 360
degrees. As the robot moves, it will update this internal position based on dead-
reckoning.

You may reset the internal coordinates to 0,0,0 with the SETO command #7.

Sonar
When connected and opened, the AmigOS sonar server begins firing AmigoBot’s sonar
in the predefined default sequence clockwise beginning with the sonar closest to the left
wheel (sonar #0). AmigOS also begins sending the sonar ranging results (millimeters) to
the client via the server-information packet. Use the SONAR command #28 to enable
(argument is "1") or disable (argument is "0") the sonar pinging.

Input / Output (I/O)
Your AmigoBot comes with a number of I/O ports that you may use for some of its
accessories and for your own custom attachments. See Appendix A, Ports and
Connections for port locations on the AmigoBot microcontroller. The various port states
and reading appear in the SIP and may be manipulated with AmigOS client commands.

 30

AmigoBot Mobile Robots

DIGIN and DIGOUT

With the AmigoBot configuration tool (see next Chapter), you decide which of six I/O
ports (IO_0-5) are inputs and which are outputs. The port states are mapped by AmigOS
in the standard SIP as corresponding bits in the standard SIP’s Digin and Digout bytes.

Digital output ports get set through the AmigOS DIGOUT command #30 with a 2-byte
integer argument. The first byte contains a mask for the bits you want to change; the
second byte in the argument contains the desired state for the selected bits.

ADSEL

Use the client command ADSEL to select the A/D port that is to appear in the AmigOS SIP
analog value. The default port is #1 out of four total. The AmigOS SIP reports the currently
selected analog input port number as the Timer value.

Sounds

The AmigoBot comes with an onboard audio amplifier and FLASH-stored sounds. To play
an sound, send the SOUND command with the sound number (1-255) argument. Use the
SOUNDTOG command to disable (argument of 0) or enable (argument = 1) all sounds.

Extended Server Information Packets
AmigOS has several extended Server Information Packets to better support the AmigoBot
robotics community. On request from the client by a related AmigOS command, the
AmigOS server will package and send one or a continuous stream of packet types to the
client over the Control serial communication line.

Packet Processing

It is up to the client to handle all packet types. Extended packets get intermingled with
the standard SIP that AmigOS sends every 100 or 50 milliseconds. Please consult the
respective client application programming manuals for details.

The AmigOS extended packets are packaged similarly to the standard Server
Information Packet, including header (0xFA, 0xFB) and the checksum. The difference,
besides the number and included data, of course, is a different packet type (Status
byte). Accordingly, the client processor should simply examine the packet type byte and
process each packet accordingly.

A sample packet processor is included with the Saphira distribution—packet.c in the
apps/ directory.

AUX Serial Packets

Use the AmigOS command number TTY2 42 to send a string (command argument) from
the client through the Control serial port and out the AUX1 serial port, which beginning
with AmigOS version 1.3, is shared with the System serial port on the RJ-11 connector on
the underside of your AmigoBot.2 Use the client command number 43 (GETAUX) to
request feedback from the AUX1 serial port. It tells AmigOS to retrieve a given number of
bytes (command argument value) from the serial device attached to that RS232-
compatible AUX port, and to package and send those incoming data in a special
SERAUXpac (type 176; 0xB0) SIP back to the client via the common HOST serial port.

2 Previously, only one AUX port was implemented and it was the TTL-level one present on the expansion

I/O connector.

 31

AmigoBot Operating System

Similarly, beginning with version 1.3, use the AmigOS TTY3 command #66, GETAUX2
command #67, and corresponding SERAUX2 (type = 0xB8) extended SIP to send a string
to, and request and receive data bytes back through the TTL-level second auxiliary serial
port on your AmigoBot’s expansion IO connector.
SERAUX and SERAUX2 Server Information Packets contents
Name Data Type Description
Header integer Exactly 0xFA, 0xFB
Byte Count byte Number of data bytes = n data +3.
Type byte 0xB0=SERAUX; 0xB8=SERAUX2
Data string N data bytes as requested in command
Checksum integer Checksum for packet integrity

AmigOS maintains a circular buffer for incoming serial data from the AUX1 and AUX2
ports and returns successive portions depending on the number of bytes you request via
the GETAUX(2) command, up to 200 total at a time. AmigOS waits to collect that
number of incoming AUX-port serial bytes before sending the packet to the client. Use
the GETAUX(2) command with a zero argument to flush the AmigOS circular buffer and
reset its pointers.

IOpac and IOREQUEST

AmigOS 1.2 introduced a new server information packet in which your AmigoBot robot
controller reports all of its I/O-connected sensor input and output values in a single cycle.

IOpac packet contents

Header integer Exactly 0xFA, 0xFB
Count byte Number of data bytes + 2
Type byte Packet type = 0xF0
Ni byte Number of digtal input bytes
Digin Ni bytes Digital input bytes
No byte Number of digital output bytes
Digout No bytes Digital output bytes
Na byte Number of A/D values
A/D Na ints A/D values 1-Na; 0-2047 (12-bit

resolution) = 0-5 VDC
Checksum integer Computed checksum

Your client software must explicitly request IO packets; they normally are disabled. Use
the AmigOS IOREQUEST command #40 with an argument value of 0, 1, or 2. The
argument 1 requests a single packet to be sent within the next cycle. The request
argument value 2 tells AmigOS to send IO packets continuously, at approximately one
per cycle, depending on serial port speed and other pending SIPs. Use the IOREQUEST
argument value 0 to stop continuous packets.

The common AmigOS IOpac contains one digital input (digin) , one digital output byte
(digout), and five analog-to-digital values corresponding to the ports AN1-5. Unlike the
standard SIP, which contains a byte value for the selected analog port, analog values in
the IOpac are integers, with resolution to 12 bits. If no electronics are attached to the
digital input or analog I/O ports, their values can vary.

Configuration Packets

Send the CONFIG command number 18 with any integer argument to request AmigOS
send back a special server information packet containing the robot's operational
parameters. The CONFIG SIP packet type is 32 (0x20).

 32

AmigoBot Mobile Robots

CONFIGpac contents
label DATA DESCRIPTION
header int Common packet header = 0xfAFB
Type byte IDs ENCODERpac = 0x20
Byte count byte Number of following data bytes
Robot Type str Typically “Pioneer”
Subtype str Identifies the ActivMedia robot model; “amigo”, for example.
Serialnum str Serial number for the robot.
4Mots Byte Antiquated (=1 if AT with P2OS)
RotVelTop int Maximum rotational velocity; deg/sec
TransVelTop int Maximum translation speed; mm/sec
RotAccTop int Maximum rotation (de)acceleration; deg/sec2
TransAccTop int Maximum translational (de)acceleration; mm/sec2
PwmMax int Maximum motor PWM (255=fully on).
Name str Unique name given to your robot.
InfoCycle byte Server information packet cycle time (0-100ms; 1=50ms)
HostBaud byte Baud rate for client-server Control serial port:

 0=9.6k, 1=19.2k, 2=38.4k
Aux1Baud byte Baud rate for AUX1 serial port 1; see HostBaud
gripper int Always 0 since AmigoBot has no gripper accessory
front sonar int Always 1 since AmigoBot has 1 sonar array
aux sonar byte 0; only one sonar array
LowBattery int In 1/10 volts; alarm activated when battery charge falls below

this value.
RevCount int Current number of differential encoder ticks for a 360 degree

revolution of the robot.
WatchDog int Ms time before robot automatically stops if it has not received a

command from a client. Restarts on restoration of connection.
P2Mpacs byte 1 enables alternative SIP.
StallVal int Maximum PWM before stall. If > PwmMax, never.
StallCount int Ms time after a stall for recovery. Motors not engaged during

this time.
JoyVel int 0; AMigobot doesn’t have a direct joystick port
JoyRVel int ditto
RotVelMax int Current max rotational speed; deg/sec.
TransVelMax int Current max translational speed; mm/sec.
RotAcc int Current rotational acceleration; deg/sec2
RotDecel int Current rotational deceleration; deg/sec2
RotKp int Current Proportional PID for rotation
RotKv int Current Derivative PID for rotation
RotKi int Current Integral PID for rotation
TransAcc int Current translational acceleration; mm/sec2
TransDecel int Current translational deceleration; mm/sec2
TransKp int Current Proportional PID for translation
TransKv int Current Derivative PID for translation
TransKi int Current Integral PID for translation

Encoder Packets

By issuing the ENCODER command number 19 with a non-zero integer argument, you
initiate a continuous stream of ENCODERpac (type 144; 0x90) SIPs. One ENCODERpac is
sent every 100 or 50 milliseconds, depending on the standard packet cycle rate
(sInfoCycle) Discontinue the packets by sending the ENCODER command number 19
with the argument = 0.

 33

AmigoBot Operating System

ENCODER Server Information Packet
Name Data Type Description
Header integer Exactly 0xFA, 0xFB
Byte Count byte Number of data bytes = 11.
Type byte 0x90
Left Encoder integer Least significant portion and the
 integer most significant portion comprise the

current 4-byte raw encoder count from
the left drive wheel

Right Encoder integer Least significant portion and the
 integer most significant portion comprise the

current 4-byte raw encoder count from
the right drive wheel

Checksum integer Checksum for packet integrity

Sound Playlist

Sound files stored in FLASH on the AmigoBot microcontroller contain a descriptive header
called the Playlist which includes a sound or sound group name3 with data address and
length. AmigOS and clients use the first 49 sounds (1-49) for system related events and
activities. Sounds 49-255 are general purpose.

Use The PLAYLIST command with the sound number as argument to retrieve the
PLAYLISTpac type (0xD0; 208) for a single sound or argument 0 to retrieve the playlist for
all user sounds. In the latter case, the first playlist request reports the number of sounds
and then sends a playlist information packet for each sound every 100 or 50 (SinfoCycle)
milliseconds.
PLAYLIST Information Packet
Name Data Type Description
Header integer Exactly 0xFA, 0xFB
Byte Count byte Number of data bytes = n data +3.
Type byte 0xD0
Sound number byte Sound number in playlist or number of sounds if first response

packet when getting all user playlist.
Sound toggle byte Sound on (1) or off (0).
Name 16 byte string Sound name in ASCII may be empty or may not be null-

terminated. If tilde (~) prefix, is a sound group name.
Offset 4 bytes Address offset to sound data; 0 if a group name or empty sound.
Length 4 bytes Length of sound data; 0 if a group name or empty sound.
Checksum integer Checksum for packet integrity

3 Name only with tilde (~) prefix designates the following sounds as members of a group of sounds. There

is no associated sound data with the group playlist entry.

 34

AmigoBot Mobile Robots

Chapter 6 Updating & Reconfiguring AmigOS
The AmigOS server software and its set of operating parameters get stored on the
AmigoBot microcontroller's flash ROM. With special download and configuration
utilities, you may change and update the flash ROM image without physically
replacing any hardware.

Where to Get AmigOS Software
Your AmigOS comes preinstalled with the latest version of AmigOS. Thereafter,
stay tuned to the amigobot-users newsgroup, or periodically visit our support
website to obtain the latest AmigOS and related documentation:

http://robots.amigobot.com

 Installing the AmigOS Utilities
The AmigOS utilities come with this technical document or can be downloaded
from the support website as a separate package. Install the version that matches
your client computer’s environment. For example, use AmigOS1_3.tgz for RedHat
Linux or AmigOS1_3.EXE with Microsoft Windows 32-bit systems. We distribute these
as compressed archives containing all the programs and accessory files you
need to perform the AmigOS upgrade and to set your AmigoBot’s configuration
parameters.

The.EXE distribution is a self-extracting, self-installing WinZIP package: Simply
follow the on-screen directions. For the Linux/UNIX versions, uncompress and untar
the distribution using the appropriate system utilities.

For example with the Linux version, the command is:
% tar –zxvf AmigOS1_0.tgz

In all case, the archive extracts into an AmigOS directory in the selected path and
stores the AmigOS utilities and images there.

System Mode and Serial Port
Changes and updates to your AmigoBot’s programs and parameters are done
through the special System serial port on the bottom of the robot and through the
controller’s System servers and communication port.

Connect an AmigoLEASH or equivalent serial cable between the System serial port
on the bottom of AmigoBot to a serial port on your host computers.

Start up or Reset your AmigoBot. After it has finished initializing, place it into
System mode: While pressing and holding the black Motors/Test pushbutton, press
and release the red Reset button. Then release the black Motors/Test button.

The robot should not reset or start Self Tests. If it does, reset and try again. When
in System Mode, AmigoBot’s amber User LED stays lit and the green System LED
flashes twice as fast as when in client-connection waiting mode.

While in System Mode you may start and quit any of the system-related utilities
without resetting the controller or re-establishing System Mode as you may have
done with a Pioneer Mobile Robot.

 35

http://robots.amigobot.com/

Maintenance and Repair

Updating AmigOS and Sounds with Amigosdl

AmigOS software, including sound files, get distributed as Intel Hex files, which
encode both data and addressing for the system. Use the amigosdl(.exe) utility
to download a fresh AmigOS or change your sound file data.

With Linux/UNIX systems, enter the AmigOS/ directory and execute amigosdl, using
the following arguments:

% ./amigosdl [pathname].hex <comm-port>

The [pathname] for the Hex image file is required and may be a full or relative
pathname. The file AmigOS1_0.hex, for example, is the current AmigOS version 1.0
image in the AmigOS directory.

The comm-port argument is optional. It lets you specify the serial communication
port that connects amigosdl with the AmigoBot System serial port. For Linux/UNIX
systems, the default is /dev/ttyS0. To communicate through /dev/ttyS3, for
example, use:

% ./amigosdl newsounds.hex /dev/ttyS3

For Microsoft Windows systems, you must specify the required AmigOS file, so you
cannot simply double-click on the program icon from the Windows desktop.
Instead, execute amigosdl.exe and pass it the proper arguments from the MS-
DOS Prompt program, which normally resides in the Programs section of the Start
menu. The default serial port is COM1.

Configuring AmigOS Operating Parameters
The program amigoscf(.exe) is the way you view and change your AmigoBot’s
identity and operating parameters.

As with amigosdl, connect with AmigoBot’s System serial port on the bottom of
the robot and enable System Mode on the robot, if you haven’t done so already.

Find and execute amigoscf(.exe) in the AmigOS directory of your AmigOS utilities
distribution.

% ./amigoscf <-p comm-port || -n>

The program accepts a couple different command options than amigosdl: Use
the –p flag to specify a serial communication port name other than the COM1 or
/dev/ttyS0 one (-p com2, for example). Or use the –n flag to start amigoscf
without having to make a connection with AmigoBot. The latter mode is useful if
you want to change your disk file-based parameters for various configurations of
AmigoBot. Also, if you use the default COM1 on your Win32 PC, you may launch
amigoscf.exe directly from the desktop, rather than executing the program from
the MS-DOS Prompt window.

On startup (after power on or Reset), AmigOS reads a set of operating
parameters from its FLASH ROM and uses these values if and until you override
them with explicit AmigOS commands. For instance, a default maximum velocity
is stored in FLASH (TransVelMax) which value is used by AmigOS when receiving a
Colbert move command or other “goto position” client command . The robot
accelerates to TransVelMax and runs at that velocity until it nears and then
decelerates as it reaches its destination.

When started, amigoscf retrieves from the microcontroller the current identifying
and operating parameters that AmigOS uses for your AmigoBot. Some of the
parameters, "Constants" in the Table, cannot be changed. The others, "Variables",
are the identifying and operating parameters that you may edit and save in

 36

AmigoBot Mobile Robots

FLASH with amigoscf. Your changes are not written to the controller’s FLASH until
you choose to explicitly "save" them. You also may save a copy of the variable
parameters in a disk-based file for later recovery.

Amigoscf Editor Commands

To view the list of current AmigOS constants or variables, type 'c' or 'v',
respectively, followed by a return (Enter). Similarly, type '?' or 'help' to see a list of
amigoscf commands.

To see a parameter's current value individually, type its keyword alone. To
change an AmigOS variable parameter's value, type its keyword followed by the
replacement value. That value may be a string (no quotes) or a decimal or
hexadecimal ("0xN") number. For example, to change the watchdog timeout to
last for four seconds, type:

> watchdog 4000
or:

 > watchdog 0xfa0

The critical operating parameters for AmigoBot are revcount and the PID control
parameters. If you get them wrong, your robot won’t run properly. Note, too, that
your amigoscf-edited parameters are not used by AmigOS unless and until you
'save' them to FLASH. And, too, you may over-ride many of these parameters with
respective AmigOS commands from the client.
Amigoscf Commands

Command Description

keyword <value> Alone, keyword displays current, edited value. Add a value
argument to change current value.

c or constants Display AmigOS constant values. You cannot change these.

v or variables Display current, edited AmigOS operational values; may be
different than values currently stored in FLASH.

r or restore
<pathname>

Restores edited variables to values currently stored in FLASH
or from a file, if filename argument included.

save <pathname> Saves current edited values to FLSH or saves current edited
values to disk for later reference.

q or quit Exits amigoscf.

? or help Displays commands and descriptions.

Saving and Restoring Parameters

The AmigOS configuration program lets you save and restore whole configuration
sets from stored files. This lets you easily configure AmigoBot for the various
different environments, as well as maintain a record of your original and test
parameters.

To save your current configuration to a disk file, get connected with the
AmigoBot with amigoscf as described earlier. This loads the current operating
parameters into the configuration editor. Then simply provide an argument to the
save command consisting of the pathname for the configuration file.

 37

Maintenance and Repair

AmigoBot Configuration parameters (AmigOS 1.0)
KEYWORD Type Default Description
CONSTANTS Cannot be changed using p2oscf
Type string Pioneer String identifies the robot as a Pioneer type and is included in the SYNC2

connection return packet along with Subtype and Name.
Subtype string Amigo Identifies the AmigoBot model.
Serial string factory set Serial number for the AmigoBot.
RotVelTop integer 360 Maximum allowable rotational velocity in degrees per second
TransVelTop integer 2200 Maximum allowable speed in millimeters per second
RotAccTop integer 360 Maximum allowable rotational (de)acceleration in degrees per second
TransAccTop integer 4000 Maximum allowable translational (de)acceleration; millimeters per second
PwmMax integer 255 Maximum motor pulse period (255=fully on).

VARIABLES Parameters that you may change with p2oscf
Name string not_set Unique name you may give your AmigoBot. Besides its ownership value,

this parameter gets passed to a connecting client as the first argument in the
SYNC2 packet, therefore useful for differentiating among multiple
AmigoBots. Maximum of 20 characters; no intervening spaces.

SInfoCycle byte 0 Standard SIP communication cycle time: 0=100, 1 = 50 milliseconds.
HostBaud byte 0 Baud rate for Control(client) serial port connection. 0=9600, 1=19200,

2=38400 bps.
Aux1Baud byte 0 Baud rate for (AUX1) serial port; values as for HostBaud
Aux2Baud byte 0 Baud rate for (AUX2) serial port; values as for HostBaud
io0 byte 0 Port IO_0 is an input port if 0; output if 1
io1 byte 0 Port IO_1 is an input port if 0; output if 1
io2 byte 0 Port IO_2 is an input port if 0; output if 1
io3 byte 0 Port IO_3 is an input port if 0; output if 1
io4 byte 0 Port IO_4 is an input port if 0; output if 1
io5 byte 0 Port IO_5 is an input port if 0; output if 1
LowBattery integer 110 In 1/10 volts; microcontroller alarm activated when battery charge falls

below this value. Automatic shutdown always at < 10V.
WatchDog integer 2000 Milliseconds time before robot automatically stops if it has not received a

command from a client. Restarts on restoration of connection with client.
RevCount integer 23310 The number of encoder ticks for a 360 degree revolution of the robot. Reset

this parameter to a number that best reflects the characteristics of your robot
in a particular environment. See revcountcal utility.

Mpacs byte 0 '1' enables new, extended AmigOS server information packet.
StallVal integer 255 Maximum PWM before stall; either or both motors. If > PwmMax, never

stalls.
StallCount integer 100 Milliseconds after a stall for recovery. Motors not engaged during this time.
RotVelMax integer 200 Maximum velocity for completion of a Colbert or similar rotation.
TransVelMax integer 300 Maximum velocity for completion of a Colbert or similar translation.
RotAcc integer 50 Rotational acceleration in degrees per second
RotDecel integer 50 Rotational deceleration in degrees per second
RotKp integer 30 Proportional PID parameter for responsiveness of the drive system. Lower

values make a slower, less-responsive system; higher values make the robot
"zippier", but can lead to overshoot and oscillation.

RotKv integer 60 Differential PID dampens oscillation and overshoot. Increasing values gives
better control oscillation and overshoot, but they also make the robot’s
movements more sluggish.

RotKi integer 0 Integral PID adjusts residual error in turning and velocity. Higher values
make the robot correct increasingly smaller errors between its desired and
actual angular position and speed.

TransAcc integer 300 Translational acceleration in degrees per second
TransDecel integer 300 Translational deceleration in degrees per second
TransKp integer 40 see RotKp
TransKv integer 80 see RotKv
TransKi integer 0 see RotKi

For example, to save your current configuration:

 38

AmigoBot Mobile Robots

> save C:\AmigOS\myAmigoBot

The command does not change the working configuration in any way and does
not include or save the configuration constants.

Use amigoscf to restore operating parameters either from the robot or from a
saved parameters files on disk. The AmigOS utilities come with the default
configuration in a file called AmigoBot.cf. Restored parameters overwrite the
temporary parameters in the amigoscf program an do not take effect on the
robot until save’d onto its FLASH.

You may edit the file-restored parameters just as you edit those retrieved from the
robot. And you may save those edited parameters back out the same file or a
different one, using the amigoscf save command.

 39

Maintenance and Repair

Chapter 7 Maintenance & Repair
Your AmigoBot Intelligent Mobile Robot is built to last a lifetime and requires little
maintenance.

Drive Lubrication
The drive motors and gearbox are sealed and self-lubricating, so you need not
fuss with grease or oil. An occasional drop or two of oil on the axle bushings
between the wheels and the case won’t hurt.

Keep the axles clear of carpet or other strings that may wrap around and bind up
AmigoBot’s drive. Occasionally wipe the tires with a damp cloth, and especially
remove any dirt or debris that may accumulate on the tires—these will degrade
the robot’s performance.

AmigoBot Batteries
Lead-acid batteries like those in your car and in your AmigoBot, last longest when
kept fully charged. In fact, severe discharge is harmful to the battery. So be
careful not to operate the robot if the battery voltage falls below 11 volts or so.
(The robot is programmed to stop working at 10 volts). In other words, heed your
robot’s incessant whining when its batteries are weak.

It’s also a good idea to store the robot plugged into the charger when it’s not
going to be used for a day or two. Charge the battery fully, then store the robot
in a cool, dry place if you intend not to use the robot for any longer period of
time(a pity!), such as for a week or more.

Charging the Battery

If you have the standard AmigoBot or the high-speed charger accessory, insert it
into a common 120-volt (European 240) AC power socket. (Some users may
require a special power-socket adapter which accompanies the charger.) Then
insert the charger’s cable into the Charge socket that is next to AmigoBot’s
Power switch on the underside of the robot. With the high-speed charger
accessory, its LEDs indicate charge status, as marked on its case.

It takes fewer than 12 hours–often just a few hours, depending on the level of
discharge– to fully charge the AmigoBot battery using its standard charger
(roughly, three hours per volt). The fast-charger accessory can charge the
battery in just an hour or two.

You do not have to turn off your robot when it is charging. In fact, we encourage
you to plug in the charger while you are programming the robot. Just make sure
to disable the robot’s motors. For instance, put it up on blocks if you put store the
robot on a table for charging. And realize that the charging time will roughly
double if you continue to operate your robot while charging.

Alternative Battery Chargers

The chargers that we supply for the AmigoBot are safe: They pose no danger to
the user, they properly charge the robot’s battery, and they may be left on and
connected with the robot for many days.

 40

AmigoBot Mobile Robots

Use a different battery charger
AT YOUR OWN RISK.

The center post of the charger socket on the AmigoBot is the positive (+) side of
the battery; the shaft is the negative (-) side. If you choose to use an alternative
battery charger for AmigoBot, be sure to connect positive to positive and
negative to negative from charger to AmigoBot.

An alternative AC to DC converter/battery charger for AmigoBot should sustain
at least 0.2 A at 13.75 to 14 VDC per battery. It also should be voltage- and
current-limited so that it cannot overcharge the batteries.

Getting Inside
We discourage you from opening up your AmigoBot. Period.

Open the robot
AT YOUR OWN RISK,

unless explicitly authorized by the AmigoBot-support.

Factory Repairs
If after reading this manual, you’re having hardware problems with your
AmigoBot and you’re sure that it needs repair, contact us:

AmigoBot-support@activmedia.com

 (603) 924-2184 fax
 (603) 924-9100 (voice)

In the body of your e-mail or fax message, provide your robot’s serial number
found on its underside, describe the problem you are having in as much detail as
possible. Also include your name, e-mail and mail addresses, as well as phone
and fax numbers. Tell us when and how we can best contact you. We will
assume e-mail is the best manner, unless otherwise notified.

We will try to resolve the problem through communication. If the robot must be
returned to the factory for repair, obtain a shipping and repair authorization code
and shipping details from us first.

We are not responsible for shipping damage or loss.

 41

Appendix A
Controller Ports & Connections
This Appendix contains pinout and electrical specifications for the external and internal
ports and connectors on the AmigoBot microcontroller board.

13 11 9 7 5 3 1
14 12 10 8 6 4 2

 Common IDC connector pinouts

System and Contro
Use the System RJ-11/12
for connections with Am
amigosdl, but not for clie
attached to the Control
used for client-software c

Only three pins of the Co
System serial ports are ac
compatible signals (RxD)
reference GND. Carefu
a common 4-wire teleph
with the System port—the
pins get reversed. Amigo
9-pin DSUB adapter whic
connector uses a comm
telephone cable for con

The AmigoBot operates a
19,200, or 38,400 bits per
eight data bits; one stop
parity or hardware hand

 42
AmigoBot Controller Connectors
l Serial Ports
connector on the bottom of the AmigoBot
igOS utilities, such as amigoscf and
nt connections. An identical connector
serial port of the microcontroller should be
ontrol connections.

ntrol and
tive: RS232-
 and TxD with
l when using
one cable
 connector
LEASH has a

h RJ-11/12
on
nection.

 Control-Mode Serial/ Radio Modem Connectors
Internal

Pin #
Signal

Connection
Modem 9-pin

Female
1 Power Gnd 5
2 5 VDC -
3 Signal Gnd -
4 TxD 3
5 RxD 2
6 RxD -
7 TxD -
8 RxD -

t 9,600,

second;
 bit; with no
shaking.

AmigoBot Mobile Robots

Internal Serial Connector
One 8-position latch-lock connector on the AmigoBot microcontroller supports Control
Mode RS-232 serial communications and power for a radio modem. If the radio is not
installed, an RJ11/12 connector provides connection to a PC via AmigoLEASH. A null-
modem adaptor is needed to connect a common serial cable to the DSUB9 female
connector that normally attaches to the modem.

Auxiliary Power
A 2-position latch-lock header on the AmigoBot controller supplies battery (~12VDC
unconditioned) power for accessories, such as the AmigoSURVEILLANCE camera,
microphone, and A/V transmitter.

Motors and Power
An eight-position mini-fit junior connector provides power from the battery to the
microcontroller and to the motors.

AmigoBot Motor/Power Connector
Pin # Connection Pin # Connection

4 R Motor – 5 BATT-
3 R Motor + 6 BATT+
2 L Motor – 7 BATT-
1 L Motor + 8 BATT+

Accessory I/O Expansion Port
A 40-pin high-density IDC latching header on the AmigoBot microcontroller provides
digital, analog, and power ports for accessory connections.
I/O Ports on Accessories Connector
Pin # Label Description Pin # Label Description

1 12V Battery 2 GND Battery
3 12V power 4 GND power
5 12V unconditioned 6 GND ground
7 IO_5 Digital I/O 8 IO_5 Digital I/O
9 IO_0 Digial I/O 10 IO_1 Digital I/O

11 Gnd Signal Ground 12 IO_2 Digital I/O
13 PWM User PWM 14 IO_3 Digital I/O
15 Gnd Signal Ground 16 TxE0 Control serial RS232
17 D0 18 RxE0 Control serial RS232
19 D1 20 Tx2 AUX serial TTL
21 D2 22 Rx2 AUX serial TTL
23 D3 24 AN0
25 D4 Data Bus 26 AN1 A/D
27 D5 28 AN2
29 D6 30 AN3
31 D7 32 RD Bus read
33 CS2 34 WR Bus write
35 CS3 Chip 36 A0 Bus
37 CS4 Selects 38 A1 Address
39 CS5 40 A2

 43

Appendix B
ARIA/Saphira AmigoBot Parameters File

;;
;; Parameters for the AmigoBot
;;

AngleConvFactor 0.001534 ; radians per angular unit (2PI/4096)
DistConvFactor 0.5083 ; mm
VelConvFactor 0.6154 ; mm/sec
RobotRadius 180.0 ; radius in mm
RobotDiagonal 120.0 ; half-height to diagonal of display octogon
Holonomic 1 ; turns in own radius
MaxRVelocity 300.0 ; degrees per second
MaxVelocity 1000.0 ; mm per second
RangeConvFactor 1.000 ; sonar range mm
DiffConvFactor 0.011 ; rotational velocity convert to deg/sec

;;
;; Robot class, subclass
;;
Class Pioneer
Subclass amigo
SonarNum 8 ; total sonars

;;
;; Sonar parameters
;; SonarNum is number of sonars
;; SonarUnit I X Y TH is unit I (0 to N-1) description
;; X, Y are position of sonar in mm, TH is bearing in degrees
;;
;;
;; Six forward sonars:
;; # x y th
;;-------------------------
SonarUnit 0 75 105 90
SonarUnit 1 115 80 44
SonarUnit 2 140 30 12
SonarUnit 3 140 -30 -12
SonarUnit 4 115 -80 -44
SonarUnit 5 75 -105 -90

;; These are for the two rear sonars:
;; # x y th
;;----------------------------
SonarUnit 6 -140 -82 -144
SonarUnit 7 -140 82 -216

;; Number of readings to keep in circular buffers
FrontBuffer 20
SideBuffer 40
QuickBuffer 24
 44

AmigoBot Mobile Robots

Appendix C
AmigoWIREFREE Radio Modem Settings
Your AmigoWIREFREE radio modems come pre-configured for use with your AmigoBot.
To connect Control Mode software (Saphira and AmigoEYES, for example), all you need
to do is attach the host modem to a free serial port on your PC and run the software.

You may examine and alter your AmigoWIREFREE settings, such as to match a new Control
Mode baud rate (hostbaud; see Chapter 6). Use Hyperterminal, Minicom, or other simple
terminal program. Default settings are DCE, 9,600 baud, 8 bits data, 1stop bit, No parity.
Once connected, all modem control commands begin with "WM". For example, "WMS2"
at the host connects the host modem to the robot’s modem.

Command Description
WMBx Set up the default baud rate. x=1 : 115200 , 2 : 57600 ,

3 : 38400 , 4 : 19200 , 5 : 9600.
WMD Disconnect the radio link established previously.
WMEx Set up echo and response function. x= ’A’ ~ ‘P’.
WMFxxxx Set up the maximum frame length. xxxx must be at most a

4-digit decimal number and ranging from 1 to 1024.
WMIxxxxxx Set up the group identification code. xxxxxx must be

exactly a 6-digit hexadecimal number. The group ID is
used to ensure that each connection within the group can
be created successfully only if the group ID is the same.

WMJxxx… Change the identification name to xxx…. The length of
xxx… cannot exceed 32 letters.

WML List current setting. The format is as follows:
WMMxxx Set up my address. xxx must be at most a 3-digit decimal

number and ranging from 1 to 255.
WMN From command mode return to data mode.
WMOxxx… Set up the partner PN code when creating wireless link.

xxx... must be exactly a 32-digit hexadecimal number.
WMPxxx… Older units have to set up your own PN codes. xxx... must

be exactly a 32-digit hexadecimal number.
Newer units xxx is a number 1-16; match with pair modem.

WMQx Query remote setting.
WMRx Set up the remote output destination. x=P : printer port,

x=R : RS-232 port.
WMSxxx Create a radio link with the partner addressed by xxx.

Xxx must be at most a 3-digit decimal number and ranging
from 1 to 255. After establishing the link, the async.
interface will enter data transmission mode until
receiving ESCAPE sequence. The ESCAPE sequence consists
of three contiguous ‘|’ characters and a <CR>. After the
reception of ESCAPE sequence, the async. interface will
re-enter into command mode.

| | |
followed by
<CR> key

From data mode escape to command mode. A delay of 100 ms
is needed between the return and any following data
input.

 45

Appendix D
Specifications

Physical Characteristics
Length 33 cm
Width 28 cm
Height (body) 13 cm
Body clearance 3 cm
Weight 3.6 Kg
Payload 1 Kg

Construction
Body Molded polycarbonate
Chassis 1.6mm CNC fabricated aluminum
Assembly Allen hex screws (metric)

Power
Battery 12V lead-acid
Charge 24.2 watt-hr
Run time 3+ hours
Recharge time (trickle) 8 hrs
Recharge time (fast) 3 hrs

Mobility
Drive wheels 2 solid rubber, with caster balance
Wheel diameter 10 cm
Wheel width 3 cm
Steering Differential
Gear ratio 19.5:1
Swing radius 33 cm
Turn radius 0 cm
Translate speed max 750 mm/sec
Rotational speed max 300 degrees/sec
Traversable step max 1.5 cm
Traversable terrain All wheelchair accessible

Sensors
Sonar 8 total
 1 each side
 4 forward
 2 rear
Position encoders 2 (one each motor)
 9,550 ticks per wheel revolution
 30 ticks per mm

Electronics
Processor 20 MHz Hitachi H8/2357
Position inputs 4
Sonar inputs 1 x 8 (multiplexed)
Digital I/O 6 digital IO logic ports
A/D 5 @ 0-5 VDC, 12-bit resolution

AmigoBot Mobile Robots

Digital timer inputs 6 @ 1µsec resolution
Comm port 3 RS-232 serial
FLASH 64 KB µP
 1M external
RAM 16 KB µP

Controls and Ports
Main Power Robot/accessories power ON/OFF
Charge System power/battery recharge
RESET Warm reboot/download
MOTORS/TEST Motors/download/self-tests
Radio Power and serial
Speaker 8-ohm
Serial ports 2 x RS232 (Control and System)
 1 TTL (AUX)

 47

Index
Accessory I/O, 14 Client-Server Mode, 9 Motion commands, 29
Accessory I/O Ports, 43 CLOSE, 28 Motor power, 43
ACTIVMEDIA, ii, 9 Cold Start, 17 Motors, 13
ADSEL, 31 Comm-port, 36 ENABLE, 28

Communication packets, 22. See
Packets

AmigoBot Mobile Robot, 7 Motors/Test, 12
Newsgroups Amigobot.p, 44

amigobot-users, 9 amigobot-support, 10 Communications rate, 23
saphira-users, 9 AmigoEYES, 8 Components

AmigOS, 8, 21 Battery, 11 OPEN, 28
amigoscf, 36 User supplied, 9 P2OS
Client commands, 27 CONFIG, 32 Configuration Parameters, 38
Configuration parameters, 36 CONFIGpac, 32 Critical parameters, 37
Configuring, 35, 36 Configuration, 15 P2OS commands, 37
Download site, 35 Configuration packets, 32 p2oscf
Downloading, 36 Configuration parameters, 36, 38 Command parameters, 38
Extended packets, 31 Control serial, 14 Packets

AUX Serial, 31 Installing, 35 Control Serial, 42
Programming, 27 Controller Checksum, 22

CONFIGpac, 32 Restoring parameters, 37 Specifications, 42
Saving parameters, 37 Controls, 11 Configuration, 32

Data types, 22 Server Information Packets,
23

Sonar Gain, 13
Controls & Ports ENCODERpac, 33

Errors, 23 Updating, 35 Charge, 11
AmigOS commands, 27 Main Power, 11 Extended, 31

IOpac, 32 amigoscf, 36 Motors/Test, 12
Amigoscf Reset, 12 processing, 31

Commands, 37 Critical parameters, 37 Protocols, 22
amigosdl, 36 Data types, 22 SERAUXpac, 31
AmigoWIREFREE, 14, 45 DCHEAD, 29 Server information, 23

connect, 45 DHEAD, 29 PAI, 9
parameters, 45 Digin, 31 Physical dimensions, 11

Argument types, 27 Dissassembly, 41 Pioneer Mobile Robots, 7
Assembly, 16 Drive Lubrication, 40 Ports
Audio, 8, 12 E_STOP, 29 Accessory I/O, 14

Email Autoconfiguration, 27 Comm-port, 36
AUX serial packets, 31 amigobot-support, 10 Control serial, 14

amigobot-users, 9 Auxillary, 43 Modem serial, 14
saphira-users, 9 Ayllu, 9 System serial, 14

Batteries, 40 ENABLE, 28 Power, 11
Charge port, 11 ENCODER, 33 Auxillary, 43
Charging, 40 ENCODERpac, 33 Main, 11

Battery, 11 Encoders, 13 Motors, 43
Low voltage, 11 Errors, 23 PULSE, 28
Recharge, 11 Extended packets, 31 Quick Start, 16
Recharge time, 12 FCC, iii Radio Modems, 14

Checksum, 22 Frequently Asked Questions, 10 Recharge, 11
class, 27 GETAUX, 31 Repairs, 40, 41
Client Hardware, 7 Authorization, 41

Commands. See Client
commands

Hex files, 36 Reset, 12
I/O, 8, 30 Resources, 7, 9

Client commands Information packets, 23 Rotation, 29
IOpac, 32 RVEL, 29 Argument types, 27

Communication rate, 24 Konolige, Dr. Kurt, 7 safety, iii
LEDs Safety Watchdog, 15 CONFIG, 32

ENCODER, 33 Power, 11 Saphira, 9
System, 12 Connection, 17 General, 24

GETAUX, 31 User, 12 Disconnecting, 18
Maintenance, 40 Errors, 19 SOUND, 31

SOUNDTOG, 31 Modes Operation, 18
Client-Server, 9 parameters, 44 Clients, 8

Client-Server, 21 System, 12, 35 Problems, 19

AmigoBot Mobile Robots

Servers, 21
Startup, 17

Self-Tests, 8
Motors, 20
Sonars, 20
Wander, 20

Self-Wander, 20
Sensors, 7
SERAUXpac, 31
Serial, 42

Configuration, 42
Control Port, 42
Internal ports, 43
System Port, 42

Server
Information packets, 23

Server information packets, 23
Servers, 21

ADSEL, 31
AmigoBot Operating System,

21
Autoconfiguration, 27
CLOSE, 28
DCHEAD, 29
DHEAD, 29
Emergency stop, 29

I/O, 30
IOREQUEST, 32
OPEN, 28
Position integration, 30
Position registration, 30
PULSE, 28
SETO, 29
SETRA, 29
SETRV, 29
shut down, 27
Sounds, 31
start up, 27
SYNC, 27
VEL, 29
VEL2, 29

SETO, 29
SETRA, 29
SETRV, 29
Shut down, 27
Software, 8

Download site, 9
Sonar Gain, 13
Sonars, 13

Firing rate, 13
Range, 13

SOUND, 31

Sounds, 12
SOUNDTOG, 31
Speaker, 12
Specifications, 7, 11, 46
SRI International, 7
SRI International, ii
Stalls, 15
stallval, 15
stallwait, 15
Start up, 27
subclass, 27
Support, 9

amigobot-support, 10
SYNC, 27
SYNC0, 27
SYNC1, 27
SYNC2, 27
System mode, 12
System Mode, 35
System serial, 14
System Serial, 42
Timer, 31
Translation, 29
VEL, 29
VEL2, 29
watchdog, 15

 49

Warranty & Liabilities

Your AmigoBot is fully warranted against defective parts or assembly for 6 months.
Accessories are warranted for 90 days. This warranty explicitly does not include damage
from shipping or from abuse or inappropriate operation, such as if the robot is allowed to
tumble or fall off a ledge, or if it is overloaded with heavy objects.

The developers, marketers, and manufacturers of AmigoBot shall bear no liabilities for
operation and use of the robot or any accompanying software except that covered by
the warranty and period. The developers, marketers, or manufacturers shall not be held
responsible for any injury to persons or property involving AmigoBot Mobile Robots in any
way. They shall bear no responsibilities or liabilities for any operation or application of the
robot, or for support of any of those activities. And under no circumstances will the
developers, marketers, or manufacturers of AmigoBot take responsibility for support of
any special or custom modification to AmigoBot or its software.

AmigoBot Mobile Robot—Technical Manual v1 August, 2000

44 Concord Street

Peterborough, NH 03458

(603) 924-9100

(603) 924-2184 fax

http://www.amigobot.com
51

	Introduction
	What is AmigoBot?
	Hardware
	Software and Modes of Operation
	AmigoBot Technical Package
	User-Supplied Components / System Requirements
	Additional Resources
	Activmedia robotics’ Software
	AmigoBot Newsgroup
	Support

	Specifications & Controls
	Physical Characteristics
	Controls, Switches, Indicators, and Sounds
	Recharge/Power/Battery
	Reset & Motors/Test Buttons and System/User LEDs
	Sounds and Volume

	Motors and Position Encoders
	Sonar
	Sonar Rate and Sequence
	Sonar Sensitivity

	Serial and Accessory Ports
	System/Aux1 Serial Port
	Control Serial Port
	Accessory Connector

	Radio Modems
	Safety Watchdogs and Configuration

	Quick Start
	Preparative Assembly
	Install ARIA
	AmigoBot Cold Start-Up
	Client-Server Connection
	A Successful Connection

	Operating the ARIA Demonstration Client
	Disconnecting
	Quickstart Troubleshooting with SRIsim
	Proper Connections
	SRIsim

	Self-Tests
	Motors Test
	Sonar Tests
	Self Wander

	AmigoBot Operating System
	Communication Packet Protocol
	Packet Data Types
	Packet Checksum
	Packet Errors

	Server Information Packets
	Client Commands
	Client Command Argument Types

	Programming AmigOS
	Synchronization—SYNC
	Autoconfiguration
	Opening the Servers—OPEN
	Keeping the Beat—PULSE
	Closing the Connection—CLOSE

	Movement Commands
	AmigoBot in Motion
	PID Controls
	Position Integration

	Sonar
	Input / Output (I/O)
	DIGIN and DIGOUT
	ADSEL
	Sounds

	Extended Server Information Packets
	Packet Processing
	AUX Serial Packets
	IOpac and IOREQUEST
	Configuration Packets
	Encoder Packets
	Sound Playlist

	Updating & Reconfiguring AmigOS
	Where to Get AmigOS Software
	Installing the AmigOS Utilities
	System Mode and Serial Port
	Updating AmigOS and Sounds with Amigosdl

	Configuring AmigOS Operating Parameters
	Amigoscf Editor Commands

	Maintenance & Repair
	Drive Lubrication
	AmigoBot Batteries
	Charging the Battery
	Alternative Battery Chargers

	Getting Inside
	Factory Repairs

	Appendix A
	System and Control Serial Ports
	Internal Serial Connector
	Auxiliary Power
	Motors and Power
	Accessory I/O Expansion Port

	Appendix B
	Appendix C
	Appendix D
	Index
	Warranty & Liabilities

