
Lecture 4

ECE2883 HP
T. Collins / K. Johnson

State machines

 State machines (specifically finite state
machines) are sequential logic

 Like combinational logic, they have inputs
and outputs

 Unlike combinational logic, they have
multiple unique conditions (states) where
the output may be different, even with the
same input

Why consider state machines?

 Suppose you want an “intelligent” traffic light controller that responds
to the presence of waiting cars in each direction
 Inputs are two bits indicating the presence of cars
 Outputs are bits to control each light color in each direction of traffic

 Would it be reasonable to build the controller with only
combinational logic?
 Do you instantly give a green light to traffic that shows up?
 What do you do when traffic is waiting in both directions?
 How to you present timed outputs like a yellow light?

 Such a controller needs to consider a HISTORY of inputs
 Combinational circuits don’t “remember” anything

State machines: The big picture

 Combinational logic without memory has no concept of state
 State machines combine memory elements with combinational logic
 The result is a device that reacts not only to the current input, but

also to the history of how inputs have been applied
 Shown here is a general Moore state machine

Classic state diagram
 A classic diagram represents each state with

a circle, and each state transition with an arc
 What does this state machine do?

Arbitrary
State Number
(binary)

Binary input x,
Binary output z

Memory and D Flip-flops

 Think of a bit of memory as
being a place that “remembers” a
0 or 1
 If you “set” it (write a “1” to it, it will

stay that way
 If you “reset” it (write a “0”, or

“clear”) it, it will stay that way, too

 One common way to
implement is a “D Flip-flop”
 When a positive clock edge comes

along, the value on the D input is
remembered (and appears at Q
output indefinitely)

 After that, D can change

Q

QS ET

C LR

D

Symbol in our CAD

Implementing the example (LEs)
 Start by noting how many state

variables (Qs) are needed
 If you have m states, the

number of bits you need will be
the smallest integer that is
greater than or equal to log2(m)

 m=3 → 1<log2(3)<2,
so we know we need 2 Qs

 Include a flip-flop for each Q
 Connect a common clock
 Use asynchronous inputs to

achieve the proper startup
behavior
 Our start state is 00, so an

active-low reset signal works

Creating the transition table
 There are two places in the “Big Picture” where

combinational logic is required
 Generating “next states” (Q+ in this example)
 Generating outputs (Z in this example)

 This step simply gathers the information needed to
solve for that logic

Present State Next State

Q1 Q0 X Q1
+ Q0

+ Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 1 1 0 1

1 1 0 d d d

1 1 1 d d d

Generating the equations
 LEs know this part. For information

only
 Each next state or output column can

be put on a K-map and solved
 Q0

+ (Next Q0) is shown here
 Solution of other two columns is

similar

 X
Q1Q0

0 1

00 0 1

01 0 0

11 d d

10 0 0

 Q 0

+

Present State Next State

Q1 Q0 X Q1
+ Q0

+ Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 1 1 0 1

1 1 0 d d d

1 1 1 d d d

Designing the circuit

• Start with the two flip-
flops

• For state machines
built with D flip-flops, D
is Q+

1

010

101

QZ
QQXQ

XQXQQ

=
=

+=
+

+

State machines in ECE2883HP

 Will usually be embedded in other devices
 Everyone will be able to conceptually

understand what they do
 LEs can do detailed design to make sure

that they work as intended
 A simple example is foreshadowed in Lab

3 assignment
Related to Waterfall Swing

Project team formation

	Lecture 4
	State machines
	Why consider state machines?
	State machines: The big picture
	Classic state diagram
	Memory and D Flip-flops
	Implementing the example (LEs)
	Creating the transition table
	Generating the equations
	Designing the circuit
	State machines in ECE2883HP
	Project team formation

