
Lecture 4

ECE2883 HP
T. Collins / K. Johnson

State machines

 State machines (specifically finite state
machines) are sequential logic

 Like combinational logic, they have inputs
and outputs

 Unlike combinational logic, they have
multiple unique conditions (states) where
the output may be different, even with the
same input

Why consider state machines?

 Suppose you want an “intelligent” traffic light controller that responds
to the presence of waiting cars in each direction
 Inputs are two bits indicating the presence of cars
 Outputs are bits to control each light color in each direction of traffic

 Would it be reasonable to build the controller with only
combinational logic?
 Do you instantly give a green light to traffic that shows up?
 What do you do when traffic is waiting in both directions?
 How to you present timed outputs like a yellow light?

 Such a controller needs to consider a HISTORY of inputs
 Combinational circuits don’t “remember” anything

State machines: The big picture

 Combinational logic without memory has no concept of state
 State machines combine memory elements with combinational logic
 The result is a device that reacts not only to the current input, but

also to the history of how inputs have been applied
 Shown here is a general Moore state machine

Classic state diagram
 A classic diagram represents each state with

a circle, and each state transition with an arc
 What does this state machine do?

Arbitrary
State Number
(binary)

Binary input x,
Binary output z

Memory and D Flip-flops

 Think of a bit of memory as
being a place that “remembers” a
0 or 1
 If you “set” it (write a “1” to it, it will

stay that way
 If you “reset” it (write a “0”, or

“clear”) it, it will stay that way, too

 One common way to
implement is a “D Flip-flop”
 When a positive clock edge comes

along, the value on the D input is
remembered (and appears at Q
output indefinitely)

 After that, D can change

Q

QS ET

C LR

D

Symbol in our CAD

Implementing the example (LEs)
 Start by noting how many state

variables (Qs) are needed
 If you have m states, the

number of bits you need will be
the smallest integer that is
greater than or equal to log2(m)

 m=3 → 1<log2(3)<2,
so we know we need 2 Qs

 Include a flip-flop for each Q
 Connect a common clock
 Use asynchronous inputs to

achieve the proper startup
behavior
 Our start state is 00, so an

active-low reset signal works

Creating the transition table
 There are two places in the “Big Picture” where

combinational logic is required
 Generating “next states” (Q+ in this example)
 Generating outputs (Z in this example)

 This step simply gathers the information needed to
solve for that logic

Present State Next State

Q1 Q0 X Q1
+ Q0

+ Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 1 1 0 1

1 1 0 d d d

1 1 1 d d d

Generating the equations
 LEs know this part. For information

only
 Each next state or output column can

be put on a K-map and solved
 Q0

+ (Next Q0) is shown here
 Solution of other two columns is

similar

 X
Q1Q0

0 1

00 0 1

01 0 0

11 d d

10 0 0

 Q 0

+

Present State Next State

Q1 Q0 X Q1
+ Q0

+ Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 1 1 0 1

1 1 0 d d d

1 1 1 d d d

Designing the circuit

• Start with the two flip-
flops

• For state machines
built with D flip-flops, D
is Q+

1

010

101

QZ
QQXQ

XQXQQ

=
=

+=
+

+

State machines in ECE2883HP

 Will usually be embedded in other devices
 Everyone will be able to conceptually

understand what they do
 LEs can do detailed design to make sure

that they work as intended
 A simple example is foreshadowed in Lab

3 assignment
Related to Waterfall Swing

Project team formation

	Lecture 4
	State machines
	Why consider state machines?
	State machines: The big picture
	Classic state diagram
	Memory and D Flip-flops
	Implementing the example (LEs)
	Creating the transition table
	Generating the equations
	Designing the circuit
	State machines in ECE2883HP
	Project team formation

