

ECE2883 HP

T. Collins / K. Johnson

State machines

- State machines (specifically *finite state machines*) are *sequential logic*
- Like combinational logic, they have inputs and outputs
- Unlike combinational logic, they have multiple unique conditions (states) where the output may be different, even with the same input

Why consider state machines?

- Suppose you want an "intelligent" traffic light controller that responds to the presence of waiting cars in each direction
 - Inputs are two bits indicating the presence of cars
 - $\circ~$ Outputs are bits to control each light color in each direction of traffic
- Would it be reasonable to build the controller with only combinational logic?
 - Do you instantly give a green light to traffic that shows up?
 - $\circ~$ What do you do when traffic is waiting in both directions?
 - How to you present timed outputs like a yellow light?
- Such a controller needs to consider a HISTORY of inputs
 - Combinational circuits don't "remember" anything

State machines: The big picture

- Combinational logic without memory has no concept of state
- State machines combine memory elements with combinational logic
- The result is a device that reacts not only to the current input, but also to the history of how inputs have been applied
- Shown here is a general Moore state machine

Classic state diagram

- A *classic* diagram represents each state with a circle, and each state transition with an arc
- What does this state machine do?

Memory and D Flip-flops

- Think of a bit of memory as being a place that "remembers" a 0 or 1
 - If you "set" it (write a "1" to it, it will stay that way
 - If you "reset" it (write a "0", or
 "clear") it, it will stay that way, too
- One common way to implement is a "D Flip-flop"
 - When a positive clock edge comes along, the value on the D input is remembered (and appears at Q output indefinitely)
 - o After that, D can change

Symbol in our CAD

Implementing the example (LEs)

- Start by noting how many state variables (Qs) are needed
 - If you have *m* states, the number of bits you need will be the smallest integer that is greater than or equal to log₂(*m*)
 - \circ m=3 → 1<log₂(3)<2, so we know we need 2 Qs
- Include a flip-flop for each Q
- Connect a common clock
- Use asynchronous inputs to achieve the proper startup behavior
 - Our start state is 00, so an active-low reset signal works

Creating the transition table

- There are two places in the "Big Picture" where combinational logic is required
 - Generating "next states" (Q+ in this example)
 - Generating outputs (Z in this example)
- This step simply gathers the information needed to solve for that logic

Present State			Next State		
Q ₁	Q ₀	Х	Q ₁ +	Q ₀ +	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	0	1
1	1	0	d	d	d
1	1	1	d	d	d

Generating the equations

- <u>LEs know this part. For information</u> only
- Each next state or output column can be put on a K-map and solved
- Q_0^+ (Next Q_0) is shown here
- Solution of other two columns is similar

Present State			Next State			
Q ₁	Q ₀	Х	Q ₁ +	Q ₀ +	Z	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	U	
0	1	1	1	0	0	
1	0	0	0	0	1	
1	0	1	1	0	1	
1	1	0	d	d	d	
1	1	1	d	d	d	

 Q_0^+

Designing the circuit

- $Q_1^{+} = XQ_0 + XQ_1$ $Q_0^{+} = X \overline{Q_1}\overline{Q_0}$ $Z = Q_1$
- Start with the two flipflops
- For state machines built with D flip-flops, D is Q+

State machines in ECE2883HP

- Will usually be embedded in other devices
- Everyone will be able to conceptually understand what they do
- LEs can do detailed design to make sure that they work as intended
- A simple example is foreshadowed in Lab 3 assignment
 - Related to Waterfall Swing

Project team formation